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Abstract

The ‘attraction effect’ or ‘asymmetric dominance effect’ is a widely studied
phenomenon in decision-making, challenging the principle of regularity in ra-
tional choice theory. It posits that the introduction of a third option, similar
but inferior to one of the available options in a binary choice set, increases the
choice share of the dominating option. While the standard attraction effect
is pervasive, recent studies have found inconsistent results. Some researchers
attribute these inconsistencies to boundary conditions that constrain the
effect, suggesting that studies failing to meet these criteria unsurprisingly
report inconsistent effects. This paper aims to clarify the presence, strength,
and direction of the attraction effect through two approaches: first, by ana-
lyzing contemporary metrics for measuring context effects and demonstrating
their susceptibility to false positives and negatives; and second, by examining
the boundary condition of strong prior trade-off—a biased preference for one
choice in the baseline set—and its impact on metric vulnerability.

Keywords: Triplet-triplet design, Attraction effect, Simulation

1. Introduction

According to one of the classic principles of rational decision-making
—regularity (Luce, 1977)— if a choice set C1 is a subset of a larger choice set
C2, then the probability of choosing any option x from C2 should not exceed
its probability of being chosen from C1. Formally:

∀x ∈ C1 ⊆ C2, P (x | C1) ≥ P (x | C2).
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Intuitively, adding an alternative to a choice set should not increase the
choice probability of any existing alternative.

As an empirical challenge to this principle, Huber et al. (1982) demon-
strated the now-famous attraction effect (or asymmetric dominance effect),
where the presence of a decoy alternative increases the choice share of a par-
ticular option. Over the past four decades, numerous pure, conceptual, and
domain replications of the attraction effect have been reported. However,
more recent studies have documented null or even reversed effects, leading
some researchers to describe the attraction effect as “fragile” or “elusive”
(Spektor et al., 2021) and to question its “practical validity” (Frederick et al.,
2014). In response to these concerns, Huber et al. (2014) outlined various
boundary conditions for the effect and recommended manipulation checks in
future studies.

This paper focuses on one such boundary condition: prior trade-offs in the
core set and the factors that generate them. If the choice probabilities in the
core set deviate significantly from an even (e.g., 50–50) split, this indicates a
strong pre-existing trade-off that may be resistant to decoy manipulations.
? suggested several factors underlying prior trade-offs, including individual
differences, attribute importance ratings, and practice effects. Further, sev-
eral other researchers (Trueblood, 2015; Simonson, 2014; Katsimpokis et al.,
2022) have also raised concerns about heterogeneity in values across individ-
uals, and how strong attribute preferences or dimensional biases (Hutchinson
et al., 2000; Liew et al., 2016) might attenuate or reverse the measured ef-
fect sizes. Notably, ? listed both prior trade-offs and cross-respondent value
heterogeneity as drivers that can inhibit attraction effects. However, to date,
there has been no rigorous mathematical analysis of how such prior bias
influences attraction effects. We raise a slightly different point in this pa-
per: we suggest that there are measurement errors, and that these errors are
exacerbated by the prior bias.

To support our claims, we first analyze contemporary measures used for
context effects, including RST, RSTew, and AST, demonstrating their ana-
lytical vulnerabilities. We then employ an agent-based modeling framework,
simulating decision-makers with heterogeneous subjective indifference curves
(SICs), to further illustrate how prior bias leads to false alarms and misses
when using these metrics in triplet-triplet designs.

The remainder of this paper is structured as follows. Section 2 provides
an overview of context effects, including the similarity and attraction ef-
fects. Section 3 details the measures of context effects and experimental
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designs, focusing on pair-triplet and triplet-triplet designs and metrics like
∆Ptarget, RST, RSTew, AST, and ASC. Section 4 presents analytical assess-
ments and simulations demonstrating the vulnerability of RST, ∆P , and
AST to false alarms and misses, particularly exacerbated by prior bias. Sec-
tion 5 introduces hypothetical choice models and agent-based simulations to
further illustrate these measurement failures at the individual level. Section
6 discusses the implications of our findings for the current controversy sur-
rounding the attraction effect. Finally, Section 7 concludes by summarizing
our findings and proposing potential solutions.

2. Context Effects

The major context effects discussed in the literature are the similarity ef-
fect (Tversky, 1972), the attraction effect (Huber et al., 1982), and the com-
promise effect (Simonson, 1989). In this article, however, we focus primarily
on the attraction effect, using the similarity effect as additional empirical
evidence within one of our hypothetical choice model simulations.

Figure 1: Illustration of the Similarity Effect and Attraction Effect.

Notes : S is the similarity decoy targeting B, and D is the attraction decoy
targeting B. The x- and y-axes represent attributes 1 and 2, respectively.
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If an item S is added to a binary choice set {A,B} such that items A and
S are placed close to each other in attribute space (as shown in Figure 1)
and are perceived as similar, the choice share of B increases:

P (B|{A,B, S}) > P (B|{A,B}).

This is known as the similarity effect (Tversky, 1972), which, in some form,
predicted violations of stochastic transitivity—a weaker form of the rational
choice rule known as Independence from Irrelevant Alternatives (IIA).1 How-
ever, the model Tversky proposed still adhered to the regularity principle.
Later, Luce (1977) argued that regularity was the only rational choice axiom
that had remained unviolated.

As discussed earlier, the attraction effect demonstrates a violation of reg-
ularity. Suppose items A and B lie on the same indifference curve in attribute
space (as depicted in Figure 1), and a third item D—inferior to B—is added
to the set. If a clear dominance relationship is perceived between B and D
(such that D is dominated by B but not by A), then the choice share of B
increases when moving from the binary to the ternary set:

P (B|{A,B,D}) > P (B|{A,B}).

3. Metrics for Decoy Effects

The key rational choice assumptions of Independence of Irrelevant Alter-
natives (IIA) and regularity were introduced in previous sections. To examine
potential violations of these principles, we define several metrics that capture
the biased choice behavior.

3.1. Target Probability Difference (∆Ptarget)

This metric captures the change in the target’s choice probability between
the triplet context (where a decoy is present) and the pair context (without
the decoy):

∆Ptarget = P (TargetC1)− P (TargetC0).

In choice frequencies:

∆Ptarget =
nTarget,C1

nTarget,C1 + nCompetitor,C1 + nDecoy,C1

− nTarget,C0

nTarget,C0 + nCompetitor,C0

.

1Strong IIA requires that the ratio of choice shares between any two items remains
constant, regardless of the choice set in which they are presented.
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Interpretation:

• ∆Ptarget > 0 indicates a violation of the regularity assumption, as the
target’s choice probability increased when the decoy was added.

• ∆Ptarget ≤ 0 indicates perfect consistency with regularity.

Note that ∆Ptarget is expected to have a reference value of zero.

3.2. ∆Ptarget in Triplet-Triplet Design

To enhance effect size and hence the statistical power of studies, Wedell
(1991) introduced a triplet-triplet design, where the focal options A and B
are each presented with a decoy that favors one option in one context and
the other option in the second context—that is, {A,B,Da} and {A,B,Db},
where Da favors A and Db favors B. Wedell claimed that this design offers
a double opportunity to detect context effects compared to the simpler pair-
triplet design.

Subsequently, most context effect studies have adopted this triplet-triplet
design. One measure of the effect in such a design, commonly used by Wedell
(1991) and others (Liu and Trueblood, 2023), is to compute the difference in
the target’s choice share between the two contexts:

∆Ptarget = P (A | {A,B,Da})− P (A | {A,B,Db}).

Here, P (A | {A,B,Dx}) represents the probability of choosing option A in
the presence of decoy Dx.

Interpretation:

• ∆Ptarget > 0 indicates an attraction effect (the decoy favoring A in-
creases A’s choice probability relative to the context where the decoy
favors B).

• ∆Ptarget < 0 indicates a reversed attraction effect (the decoy that sup-
posedly favors A actually reduces A’s choice probability relative to the
other context).

• ∆Ptarget = 0 indicates no differential decoy effect between contexts
(consistent with regularity and IIA).
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3.3. Relative Share of Target (RST)

An alternative to ∆Ptarget is the Relative Share of Target (RST), proposed
by Berkowitsch et al. (2014).

In terms of choice frequencies, aggregating target choices across both
contexts and normalizing by the total choices of the target and competitor:

RST =
nTarget,C1 + nTarget,C2

nTarget,C1 + nTarget,C2 + nCompetitor,C1 + nCompetitor,C2

.

An RST value above 0.5 indicates that the target is chosen more often
than the competitor, while an RST of 0.5 indicates equal preference.

3.4. Equal-Weight Relative Share of the Target (RSTew)

To reduce potential biases in RST, Katsimpokis et al. (2022) proposed
RSTew (equal weights), which averages the target share within each context:

RSTew =
1

2

(
P (TargetC1)

P (TargetC1) + P (CompetitorC1)
+

P (TargetC2)

P (TargetC2) + P (CompetitorC2)

)
.

The corresponding choice frequency formula is:

RSTew =
1

2

(
nTarget,C1

nTarget,C1 + nCompetitor,C1

+
nTarget,C2

nTarget,C2 + nCompetitor,C2

)
.

Values above 0.5 indicate a higher relative preference for the target on aver-
age, while values below 0.5 indicate a higher preference for the competitor.

3.5. Absolute Shares of the Target and Competitor (AST and ASC)

While the triplet-triplet design primarily tests for menu dependence (vi-
olation of IIA), it can also be used to indirectly test for violations of the
regularity principle (Katsimpokis et al., 2022). Katsimpokis et al. (2022)
introduced the Absolute Share of Target (AST) and the Absolute Share of
Competitor (ASC), which incorporate decoy choices into the denominator:

Absolute Share of the Target (AST)..

AST =
1

2
(P (TargetC1) + P (TargetC2)) .

In choice frequencies:

AST =
1

2

(
nTarget,C1

nTarget,C1 + nCompetitor,C1 + nD,C1

+
nTarget,C2

nTarget,C2 + nCompetitor,C2 + nD,C2

)
.
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Absolute Share of the Competitor (ASC)..

ASC =
1

2
(P (CompetitorC1) + P (CompetitorC2)) .

In choice frequencies:

ASC =
1

2

(
nCompetitor,C1

nTarget,C1 + nCompetitor,C1 + nD,C1

+
nCompetitor,C2

nTarget,C2 + nCompetitor,C2 + nD,C2

)
.

An AST value greater than 0.5 indicates a standard (positive) attraction
effect favoring the target, while an ASC value greater than 0.5 indicates a
reversed (negative) attraction effect favoring the competitor.

Note that AST and ASC are adapted from Katsimpokis et al. (2022),
and their derivation is provided in Appendix A. while ∆Ptarget has a refer-
ence value of zero, the triplet-triplet metrics (RST, RSTew, AST, and ASC)
have a reference value of 0.5, corresponding to equal preference between the
target and competitor. To facilitate comparison across metrics, these can be
converted to a zero-referenced format by subtracting 0.5, with positive values
in RST , RSTew, AST indicating relative preference for the target.

4. Analytical Proofs of Metric Vulnerabilities

4.1. RST False Positives Under IIA

In probability terms,

RST =
PC1(A) + PC2(B)

PC1(A) + PC2(B) + PC1(B) + PC2(A)
(1)

Substituting:

RST =
rb1 + b2

rb1 + b2 + b1 + rb2
(2)

where b1 = PC1(B), b2 = PC2(B), and r =
PC1

(A)

PC1
(B)

=
PC2

(A)

PC2
(B)

(Assuming strong

IIA holds).
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4.1.1. Condition for RST = 0.5

rb1 + b2
rb1 + b2 + b1 + rb2

=
1

2
(3)

2(rb1 + b2) = rb1 + b2 + b1 + rb2 (4)

⇒ (rb1 − b1) = (rb2 − b2) (5)

⇒ b1(r − 1) = b2(r − 1) (6)

Thus,
RST = 0.5 if and only if r = 1 or b1 = b2 (7)

Implication: When the preference ratio r ̸= 1 (i.e., prior bias exists), RST
will deviate from 0.5 even if the underlying preference structure is unchanged,
leading to false positives.

4.2. Misses Under Opposing Effects

Let the baseline choice probabilities between options A and B be:

P0(A) = p, P0(B) = 1− p, (8)

where p ∈ (0, 1).
Let us define two triplet contexts: Context 1 (C1), defined as {A,B,DA},
with decoy DA designed to favor A (target: A); and Context 2 (C2), defined
as {A,B,DB}, with decoy DB designed to favor B (target: B). The choice
probabilities are:

P (TargetC1) = PC1(A) = p+∆A, PC1(B) = (1− p)−∆A − δ1, (9)

P (TargetC2) = PC2(B) = (1− p) + ∆B, PC2(A) = p−∆B − δ2. (10)

where ∆A and ∆B are the effect sizes in contexts C1 and C2 respectively, and
δ1 and δ2 are the probabilities of the decoys in the respective contexts. As
introduced earlier,

AST =
1

2
(P (TargetC1) + P (TargetC2)) .

From the equations:

P (TargetC1) = p+∆A and P (TargetC2) = (1− p) + ∆B.
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Thus:

AST =
1

2
[(p+∆A) + ((1− p) + ∆B)] =

1

2
[1 + (∆A +∆B)] .

Subtracting 0.5:

AST − 0.5 =
∆A +∆B

2
.

When decoys produce opposing effects (∆A > 0,∆B < 0):

AST − 0.5 =
∆A +∆B

2
≤ ∆A

2
< ∆PA.

AST underestimates true effects by at least 50%. A similar analysis can
be applied to all other triplet-triplet metrics that use averaging across two
contexts, demonstrating that such metrics systematically underestimate the
effect sizes when the two decoys produce opposing effects.

5. Simulation Studies

5.1. Parameter Space Exploration

5.1.1. For RST metric

To assess the sensitivity of the RST metric to variations in baseline prefer-
ences and decoy probabilities, we conducted a systematic parameter space
exploration. Specifically, we examined the behavior of RST as defined in
Equation (??), which depends on the baseline preference ratio r and the
baseline choice probabilities b1 and b2 associated with the decoy-influenced
choices in the two contexts.
In our simulation, the baseline preference ratio r was varied continuously from
0.5 to 2.0, while b1 and b2 were varied independently within the range 0.05 to
0.45. For each combination of r, b1, and b2, we computed the corresponding
RST value. We then identified, for each r, the minimum and maximum RST
values across the full range of b1 and b2.
The results of this analysis revealed that RST systematically deviates from
the null value of 0.5 whenever either r ̸= 1 or b1 ̸= b2, even in the absence
of any true context effect. This finding demonstrates that RST can produce
apparent effects purely due to baseline asymmetries, thereby generating false
positives. These results underscore the need to interpret RST with caution,
especially when baseline preference asymmetries are present. Figure 2 shows
the deviations of RST from 0.5.
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Figure 2: RST values across different baseline preference ratios r. Deviations from 0.5
occur when r ̸= 1, indicating false alarms.

5.1.2. For AST metric

We next examined the behavior of the AST metric, recently introduced as a
triplet-triplet measure of context effects, under varying decoy-induced ef-
fects across two different contexts. As noted earlier, triplet-triplet mea-
sures—including RST, RSTew, and AST or ASC—rely on the critical assump-
tion that the decoys introduced in these two contexts behave symmetrically
relative to participants’ subjective valuations. This assumption is often op-
erationalized by ensuring equal target–decoy distances in both contexts to
claim decoy symmetry.
However, as discussed previously, baseline biases—such as a prior trade-off in
favor of one attribute dimension or an inherent preference for one of the core
items (A or B)—violate this assumption of symmetry. When SICs shift due
to such preferences, the decoys no longer exert equivalent influences in both
contexts. In this scenario, a decoy in one context may produce a positive at-
traction effect, while the decoy in the other context may produce a negative
(or reversed) attraction effect. When averaged across contexts, the metrics
can fail to detect these opposing effects, leading to an underestimation or
even complete cancellation of the true context effect. Consequently, these
metrics may miss violations of regularity and the Independence of Irrelevant
Alternatives (IIA) between each triplet and the baseline pair, while poten-
tially indicating no violation between the two triplet contexts themselves.
To illustrate this, we simulated the AST surface by varying ∆A and ∆B
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independently from −0.2 to 0.2. Here, ∆A and ∆B represent the decoy-
induced context effects in each of the two contexts, respectively. For each
combination, we calculated the AST value using the relation:

AST = 0.5
(
1 + ∆A +∆B

)
,

and plotted the deviation from the null value of 0.5 in a heatmap. The
results, shown in Figure X, reveal that when ∆A > 0 and ∆B < 0, AST
approaches the null value (< 0.5) despite substantial positive and negative
context effects in the individual triplets. This cancellation is particularly
evident along the diagonal ∆A = −∆B, where the patterned region below
this line indicates AST < 0.5. This highlights that the standard attraction
effect is effectively masked, leading to false negatives even when genuine
context effects are present. Consequently, AST is insensitive to opposing
decoy effects in the two contexts and may miss violations of regularity and
IIA. This analysis underscores the limitations of AST in detecting context
effects when decoys exert asymmetric or opposing influences across the two
contexts.

5.2. Agent-Based Modeling

In the following section, we adopt hypothetical choice models and further
simulate choices under different SICs to illustrate the limitations of triplet-
triplet metrics. We use an agent-based modeling framework in which agents
(decision-makers) are simulated independently, each characterized by a unique
subjective indifference curve. No agent–agent interaction is modeled; our
focus is on heterogeneity in individual choice behavior and its aggregate im-
plications.
Our first set of agents (hypothetical choice models) mimic ideal (rational)
decision-makers who perfectly obey IIA. Nonetheless, we show how most
of the measures produce false alarms. In contrast, our second hypothetical
choice model uses empirical evidence to simulate decision-makers who violate
regularity and hence IIA between pair and triplet contexts. In this case, we
demonstrate how the metrics fail to detect these violations and instead falsely
report null effects or reduced effects.

5.2.1. Simulation Methodology

We used a Python-based program to simulate agents with different SICs.
Items in the choice set were represented as points on the x-y plane. The
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Figure 3: Heatmap of AST − 0.5 over ∆A and ∆B . Patterned regions indicate underesti-
mation or complete masking of effects.
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x-y plane represents the attribute space, with the two primary attributes of
interest representing the x and y-axis. Two items, A and B, from the binary
choice set are placed on the attribute space as two points, and we call the line
joining them, i.e., AB, the experimenter-defined indifference curve (EDIC).
Note, here, that we assume a linear indifference curve for simplicity. True
SICs representing different individuals are lines with varying slopes. We as-
sume that slope alone can characterize a linear indifference curve, meaning
an infinite number of parallel indifference curves on this plane can repre-
sent one specific individual. Leveraging this property, we simulated all SICs
as lines with different slopes, passing through point A, and proceeded with
further mathematical analysis. Suppose two points U and W lie on the
indifference curve. In that case, it means the corresponding individual is
indifferent to the two items represented by the points, i.e., when the subject
comes across the items in binary choice sets appearing enough times in be-
tween other trials, his choice frequencies for both will be roughly equal, i.e.
P (U |{U,W}) ≈ P (W |{U,W}.
A deviation from the SIC is characterized by a signed perpendicular distance
from it, such that points right to the SIC will have a positive deviation and
points to the left will have a negative deviation. As the direction along the
positive x-axis represents the increasing strength of the attribute, items with
positive deviation are considered ‘better’ than the corresponding foot of the
perpendicular on the SIC. This assumption is reasonable. The preference
accumulation model by Bhatia (2013) also has a similar assumption.
The signed deviations from the SIC serve as arguments to a softmax function
2 that outputs choice shares in terms of probabilities summing to one. Figure
4a shows line AB as the EDIC with the perpendicular line segments BB’
representing the signed deviation of B from the B’ points on respective SICs.
Figure 4b shows the simulated baseline choice shares in the binary choice set
as a function of SIC slopes.
We used a Temperature-Scaled SoftMax function to model choice shares. As
mentioned earlier, a vector of signed perpendiculars corresponding to each
element in the choice set serves as the argument for the softmax.

softmax(xi) =
e(β·(xi−max(x)))∑N
j=1 e

(β·(xj−max(x)))
,

2A justification of using a softmax function is discussed in the Appendix.
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where, xi represents the i-th element of the input vector. max(x) calculates
the maximum value within the input vector x. Subtracting the maximum
value max(x) from the input values provides numerical stability. It ensures
that the largest exponent in the numerator is zero, preventing overflow is-
sues that might occur when dealing with large numbers in the exponential
function. β is a multiplicative coefficient that scales the input values before
computing the softmax function, i.e., a higher β amplifies the differences be-
tween the input values. N denotes the size of the choice set: 2 for the pair and
3 for the triplets. The softmax function normalizes the scaled exponentiated
values by dividing each exponentiated input by the sum of all exponentiated
inputs. This normalization ensures that the output values lie in the range
[0, 1] and sum up to 1, representing a valid probability distribution over the
input values.

Figure 4: Subject Specific Indifference Curves (SICs)

(a) SICs represented by different slopes Mi (b) Baseline Shares vs SIC Slopes

Figure 4a shows line AB as the EDIC with the perpendicular line segments
BB’ representing the signed deviation of B from the B’ points on respective
SICs. Figure 4b shows the simulated baseline choice shares in the binary
choice set as a function of SIC slopes.
As we describe below, temperature scaling offers an effective parametric way
of instantiating theoretical expectations for context effects. In our simula-
tions, items A and B are presented either in pairs or in two triplets {A,B,Da}
or {A,B,Db}, where Da and Db are two decoy options targeting A and B,
respectively. The two triplets serve as two choice contexts.
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5.2.2. Model 1 (IIA-Adherent)

In the absence of any context effect, Luce’s choice rule, independence from
irrelevant alternative (IIA) should be adhered to, i.e., the ratio of choice
shares of two items should remain constant irrespective of the context (choice

set) in which they are presented; P (X|C)
P (Y |C)

= Constant, irrespective of C; where
X and Y are two items and C is any context. This condition is easily achieved
by setting β = 1 in the softmax function.

Results. Figure 5b clearly shows that some of the measures of context effects
(RST and ∆P ) show negative effects for nearly all values of SIC slopes. We
call these false alarms (FAs) in the detection of context effects. Notably,
RSTew, AST, and ASC do not appear to demonstrate false alarms, unlike
other measures.

Figure 5: False Alarms in the Detection of Context Effects

(a) Choice Shares (b) Measures of Context Effects

Notes : C: C1({A,B,Da}), C2({A,B,Db}). The choice shares of A and B in
the triplets have values less than their corresponding baseline values in plot
5a. In 5b, the standard attraction effect is shown in a blue-filled color, and
the reversed attraction effect is shown in a red-filled color.

5.2.3. Model 2 (IIA-Violating)

Our modeling goal, here, was to artificially introduce a violation of IIA,
mimicking one of the context effects as observed from the empirical data,
such that in one of the two triplets, there is an attraction effect, while in the
other, there is a reverse attraction effect. This would allow us to test the
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efficacy of the instruments used to capture context effects in a triplet-triplet
design. We consider two conditions:

1. When there is a dominance perceived between the target and the at-
traction decoy, the choice share of the target increases in the triplet.
(Attraction effect)

2. When a dominance relation is not perceived between the target and
the decoy; rather, both are perceived to be similar, the choice share
of the competitor would increase. (A similarity-effect driven reverse-
attraction effect)

Figure 6: Attraction and reversed attraction in the two contexts

As shown in Figure 6, in this simulation, the first condition is achieved when
an SIC passing through A also passes through the line segment joining B
and D2. This would make the points B and D2 fall on two opposite sides of
the SIC, hence assigning opposite signs to the corresponding signed perpen-
diculars that will serve as the arguments to the softmax function. In other
words, B is perceived as ‘better’ than its corresponding foot of the perpen-
dicular (and hence point A) on the SIC, while D2 is perceived as ‘worse’ than
A. This makes a clear perceived dominance relationship between B and D2,
satisfying the condition for the attraction effect (the first theory considered
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in this simulation). We model the effect on choice shares by simply setting
β = 4.5 in the softmax function. This computation increases the choice share
of B, reasonably mimicking an attraction effect targeting B.
Note, however, that for the same SIC, points A and D1 lie on the same side
of the curve. This can be appreciated by noticing the parallel line passing
through point B, but having the same slope, hence representing the same
SIC. Because of this, both A and D1 are perceived to be worse as compared
to B. We model this as a case of similarity where a clear dominance between
A and D1 is not perceived; rather, both appear similar with respect to B.
Hence, the similarity effect should operate, and we achieve it by again setting
β = 4.5, which in turn, increases the choice share of B. This is technically a
similarity-induced reversed attraction effect.
Taken together, for SIC slopes in a small range close to EDIC, for the same
SICs, when D1s produce reversed attraction effects, D2s produce attraction
effects. Similarly, it can be shown that for an SIC through A, that passes
between B and D11 (D11 is simply a proxy for D1 when the SIC is shown
to have passed through A rather than through B), D2 produces a reversed
attraction effect while D1 produces an attraction effect.

Results. Figure 7 shows results from our simulations for an individual agent.
In particular, the filled dots in Figure 7a indicate instances of choice shares of
A and B in triplets (C1: {A,B,Da}, C2: {A,B,Db}) whose values are clearly
beyond their corresponding baseline values. These are cases of violations of
regularity, a weaker form of IIA. Figure 7b shows how no existing measures
of context effects, including the recently introduced AST and ASC, capture
them. We call such instances ‘misses’ in the context of detecting context
effects.
Notes : C: C1({A,B,Da}), C2({A,B,Db}). 7b shows only reversed attrac-
tion effects as indicated by RST.

6. Discussion

Our combined analysis reveals critical limitations:

• False alarms: RST and ∆PTarget signals IIA violations due solely to
baseline asymmetries in core choice probabilities, not genuine effects.

• Missed effects: AST, ASC, and RSTew cancel opposing effects, lead-
ing to underestimation or complete masking of true context effects.
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Figure 7: Misses in Detecting Context Effects

(a) Choice Shares (b) Measures of Context Effect

It is conceivable that the measurement error in the presence of dimensional
bias, which we discussed in the paper, is one of the key reasons for the
empirical controversy surrounding the characterization of the attraction ef-
fect (Huber et al., 2014; Frederick et al., 2014; Spektor et al., 2018, 2022).For
example, in the 12 experiments, 1A-1S in (Frederick et al., 2014), all the
studies have biased baseline choice shares, and they found mostly reversed
effects. Similarly, Liew et al. (2016) have shown dimensional biases, but have
concluded that averaging across the population consisting of dimensional bi-
ases is the cause of reduced context effects. While that is a valid conclusion,
we make a different case here; two contexts may have different effects for
the same individuals owing to the asymmetry of decoy placements with re-
spect to the SICs. It should be noted that following Wedell (1991), most
studies showing reversed or reduced attraction effects (Spektor et al., 2018,
2022) have employed triplet-triplet designs, and as they have not reported
binary baseline choice shares, the confounds we have highlighted in this pa-
per apply to their results as well. We argue that for testing context-based
preference reversals, either the pair-triplet design should be incorporated,
or if the triplet-triplet design is employed, experimenters need to separately
ensure that there is symmetry of choice shares between the baseline core op-
tions. One of the limitations of our work is, as mentioned earlier, we have
just focused on one of the boundary conditions of the effect that Huber et al.
(2014) have already discussed, i.e., ‘strong prior trade-off’ and showed how
the triplet-triplet measure could be misleading in the presence of the biased
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baseline shares. So, our work here adds to theirs. Also, we acknowledge that
we have used only range decoys for the agent-based simulations, as they are
known to produce maximum context effects. However, the simulations can
be easily extended to accommodate other decoy types without affecting the
interpretations.

7. Conclusion

Existing triplet-based metrics are fundamentally flawed: they are prone to
both false positives and false negatives due to their structural assumptions.
As solutions to the issues with the extant instruments, we propose includ-
ing pair-triplet measurements, wherever possible, in the experimental designs
and accessing the subject-specific indifference curves to design the stimulus
space accordingly. With the growing influence of digitization and user pro-
filing in online shopping, baseline choice shares have become more accessible
for marketers to leverage. Hence, the issues discussed and the proposed solu-
tions equally apply to marketers who wish to incorporate the context effects
into product designs and marketing strategies.

Appendix A. Justification of SoftMax as a model of choice of
shares

We could have used a simple normalization instead of using SoftMax as
the model of choice in the simulations. Both normalization and SoftMax
maintain the ratio of choice shares between the two contexts without violating
strong IIA. Note in Figure A.8 that

P (A | C1)

P (B | C1)
=

P (A | C2)

P (B | C2)

for both the models. However, the assumption that all parallel lines having
the same slopes represent one SIC can only be supported by the SoftMax
model, as the ratio of choice probabilities it produces remains constant over
varying y intercepts of the SIC for a specific slope. Note that this is clearly
not the case with normalization, as shown in the figure below.
Notes : The plot shows ratios of choice shares of A and B as a function of
different y-intercepts of SIC having a specific slope, m = -0.6.
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Justification of SoftMax over normalization as a model of choice.

Appendix B. Derivations of AST and ASC

The derivation is adapted from (Katsimpokis et al., 2022). Suppose A and
B are two core options presented in the binary choice set {A,B} and in
ternary choice sets {A,B,Da} and {A,B,Db}, where Da and Db are the
decoys favoring A and B respectively in the two contexts. Adhering to the
principle of regularity,

P (A|{A,B}) ≥ P (A|{A,B,Da}), (1)

P (A|{A,B}) ≥ P (A|{A,B,Db}), (2)

P (B|{A,B}) ≥ P (B|{A,B,Da}), (3)

P (B|{A,B}) ≥ P (B|{A,B,Db}). (4)

But, we know that according to the law of total probability, P (A|{A,B}) +
P (B|{A,B}) = 1. So, adding equations 1 and 4,

P (A|{A,B,Da}) + P (B|{A,B,Db}) ≤ 1. (5)

Similarly, adding equations 2 and 3,

P (A|{A,B,Db}) + P (B|{A,B,Da}) ≤ 1. (6)

(Note that the other combinations would give rise to obvious results owing
to the definition of multinomial distribution; they are not mentioned, and
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equations 5 and 6 can serve as tests for regularity violation.) To keep the
format of the inequalities similar to that of RST, an existing measure of
context effect (Katsimpokis et al., 2022) both sides of the above equations
multiplied by 0.5, leading to

0.5× [P (A|{A,B,Da}) + P (B|{A,B,Db})] ≤ 0.5, (7)

0.5× [P (A′|{A,B,Db}) + P (B|{A,B,Da})] ≤ 0.5. (8)

Considering one of A and B as the target (t) and the other competitor (c),
and the third as a decoy (Dtarget) favoring the target option, the probability
terms in equations 5 and 6 can be rewritten in terms of choice frequencies as
follows,

0.5×
[

nA

nA + nB + nDa

in C1 +
nB

nA + nB + nDb

in C2

]
≤ 0.5, (9)

0.5×
[

nB

nA + nB + nDa

in C1 +
nA

nA + nB + nDb

in C2

]
≤ 0.5. (10)

Where, nx in C# is the choice frequency of option x in the context C#;
x is either A, B, Da, or Db. C1 and C2 are the two ternary choice sets
{A,B,Da} and {A,B,Db}, i.e., A is the target in C1 and B is the target
in C2. The choice frequency of an option in a ternary choice set is equal to
the total number of times that option is chosen when the ternary choice set
appears enough times in between other trials containing other choice sets.
Note that the two inequalities’ left-hand sides are AST and ASC, respectively,
as defined in the main text. AST and ASC should be less than or equal to
0.5 for no regularity violation.
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