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Abstract

A widely studied cognitive bias in decision-making is the ‘at-
traction effect’ or ‘asymmetric dominance effect’, where in-
troducing a clearly inferior decoy option to a binary choice
set increases the likelihood of choosing the dominating option
(target) over the other (competitor). While there is a consensus
in the literature that the attraction effect is robust with numer-
ical stimuli, there have been inconsistent results with percep-
tual stimuli (Frederick et al., 2014). This numerical-perceptual
distinction was further supported in some recent studies in-
volving perceptual stimuli claiming to have produced a neg-
ative attraction effect (Spektor et al., 2018, 2022). We argue
that this distinction does not exist and that people’s choice be-
havior is better explained by inter-attribute relationships. In
this study, we conducted two experiments where we showed
positive attraction effects with combined perceptual-numerical
stimuli (having both perceptual and numerical attributes) and
both positive and null effects with numerical stimuli by ma-
nipulating the asymmetry in pair-wise comparison difficulty.
In Experiment 1, we provided evidence for a strong attraction
effect for perceptual-numerical stimuli by ensuring the trade-
off between the attributes are difficult. Next, in Experiment 2,
we manipulated the competitor-decoy (CD) comparison dif-
ficulty while controlling for a confound—target-competitor
(TC) comparison difficulty, a factor that has yet to be addressed
by studies that have produced a positive attraction effect with
perceptual stimuli. To achieve this manipulation, we leveraged
findings from mathematical cognition and education research
on fraction comparison, effectively activating or suppressing
the standard attraction effect through our experimental design.
Taken together, the results from both studies challenge the su-
perficial distinction between stimulus types and support a uni-
versal cognitive mechanism underlying the ubiquitous attrac-
tion effect.
Keywords: attraction effect; context effect; asymmetric dom-
inance; trade-off-difficulty; mathematical cognition; fraction
comparison

General Introduction
Adding an alternative to a choice set should not increase the
choice share of the original alternatives — an important prin-
ciple in rational choice theory known as regularity (Luce,
1977). Huber et al. (1982) empirically demonstrated a vio-
lation of this assumption with the famous asymmetric domi-
nance or attraction effect.

Beyond its theoretical significance, the attraction effect
also serves as a practical behavioral nudge to influence con-
sumer choices. Simply put, introducing a third option can
sway decision-makers toward one of the original choices.
While this effect has been observed across various domains
and species over the past four decades, recent findings have
questioned its domain generality.

Choices presented as symbolic digits have shown large
context effects (Huber et al., 1982; Simonson, 1989). In con-
trast, Frederick et al. (2014) suggested that perceptual rep-
resentations often elicit different effects than numeric repre-
sentations, suggesting that the attraction effect may not be
prevalent in choices that involve distinguishing between per-
ceptual attributes. Huber et al. (2014), while advocating for
the existence of the attraction effect highlighted the issue of
over-generalization and blamed the lack of the effect in the
perceptual domain on possible different processing. Brendl
et al. (2023) argued that the quantitative-qualitative difference
of the stimuli explained the numerical-perceptual difference.
Spektor et al. (2021) highlighted this difference and ascribed
it to the attribute concreteness in numerical stimuli, absent
in perceptual ones. In contrast, however, research has found
that people find numbers relatively intuitive to process. With
more experience with numbers over the course of their lives,
symbolic number processing is less associated with more de-
liberate thought in the prefrontal cortex and more automatic
processing in the intraparietal sulcus (Ansari et al., 2005).
This is because symbolic number processing is mapped to
the approximate number system, which is associated with the
processing of numeric magnitudes across modalities (Feigen-
son et al., 2004). Over development, people process symbolic
numbers similarly to how we process perceptual dimensions,
such as brightness and loudness. Similar to how those dimen-
sions are perceived, the internal representation number is log-
arithmic in nature. Additionally, although initial studies in the
perceptual domain demonstrated a positive attraction effect
(Choplin & Hummel, 2005; Trueblood et al., 2013), subse-
quent findings of reversed effects in perceptual tasks (Spektor
et al., 2018, 2022) posed a significant challenge to the claim
of the effect’s domain generality.

However, He and Sternthal (2023) proposed that the attrac-
tion effect occurs for both numerical and perceptual stimuli
when ambiguity in choice prompts individuals to focus at-
tention on the comparison of the target and applicable de-
coy to resolve the ambiguity. Likewise, Rath et al. (2024b)
claimed that the previous multi-alternative, multi-attribute
choice tasks employing perceptual stimuli (Spektor et al.,
2018, 2022) failed to adhere to the boundary condition of
asymmetric dominance while their task did. An asymmet-
rically dominated alternative is dominated by one item in the
set but not by another (Huber et al., 1982). Figure 1 dis-



plays one such configuration of items in the attribute space.
Rath et al. (2024b) satisfied the proposal requisite precondi-
tion for the effect by introducing a novel stimulus to increase
the competitor-decoy (CD) comparison difficulty. CD com-
parisons were made more difficult by increasing the inter-
attribute trade-off difficulty. When attributes are difficult to
trade off, CD comparisons involving two extreme attribute
values become difficult, whereas target-decoy (TD) compar-
isons remain easy. Rath et al. (2024b) showed that this asym-
metry in difficulty translated to the asymmetry of the domi-
nance of the decoy by the target and the competitor to produce
a positive attraction effect. Conversely, with easy-to-trade-off
attributes, it is likely that comparisons between alternatives
are no longer along different attribute dimensions but along a
common currency, leading to no context effects.

Figure 2 depicts one sample stimulus from each of these
studies. The two attributes of interest in the first one were the
height and width of rectangles, and the task was to choose
the rectangle with the largest area. The second one had fill
lengths in a horizontal and a vertical bar as two attributes,
and the task was to choose the alternative with the largest
sum. The stimuli in Rath et al. (2024a) had the maximum
width and length of the indentations in a star-like shape as
two varying attributes, and the task was to choose the shape
that required the least amount of extra material to make it a
perfect square. Unlike the previous two, the relation of the
attributes to the task was not straightforward here.

Figure 1: Asymmetric Dominance Effect.

Given the existing literature, researchers have observed a
strong positive effect in perceptual tasks with asymmetric
dominance and a null effect in its absence. To blur the distinc-
tion between numerical and perceptual stimuli, we conducted
two experiments: one with combined perceptual-numerical
stimuli that ensured asymmetric dominance of the decoy and
another with numerical stimuli, both with and without asym-
metric dominance. For the second experiment with numerical
stimuli, we relied on the findings from mathematical educa-
tion and cognition research on how people understand frac-
tions (Obersteiner et al., 2020, 2022).

Figure 2: Sample Stimulus adapted from three experiments
Trueblood et al. (2013), Spektor et al. (2022), and Rath et al.
(2024b) in left to right order.

Experiment 1
Introduction Real-life decisions often involve difficult-to-
trade-off attributes (Bhatia & Walasek, 2024). The choice be-
tween two alternatives becomes challenging when trading off
their prominent attributes is difficult. A trade-off is defined
as a kind of compromise that involves giving up something in
return for gaining something else. In economics, a trade-off
is often referred to as an ”opportunity cost.” For example, one
might take a day off work to attend a concert, gaining the op-
portunity to see their favorite band while losing a day’s wages
as the cost of that opportunity (Vocabulary.com, 2024).

Although Huber et al. (2014) did not explicitly introduce
attribute-trade-off-difficulty as a boundary condition, they
indirectly hinted at it: “...for the attraction effect to occur, the
decision maker should also be unsure whether a ten-point dif-
ference in restaurant ratings is worth a $10 price difference.”
This suggests that the difficulty of comparing attributes plays
a critical role in the attraction effect.

Walasek and Brown (2023) further emphasized the im-
portance of attribute incommensurability in multi-attribute,
multi-alternative choices. They provided a compelling exam-
ple to illustrate this concept. Imagine comparing two candi-
dates for an assistant professor position at a research-focused
university. Assume that the candidates are evaluated based
on two distinct attributes: research value, measured by ci-
tation counts (e.g., h-indices), and teaching value, measured
by student ratings. If only one attribute mattered, the deci-
sion would be straightforward: choose the best teacher or the
best researcher. However, if the university’s guidelines re-
quire both teaching and research to be considered, the deci-
sion becomes complex. If teaching ratings reflect only teach-
ing value and h-indices reflect only research value, how does
one trade off these two different scores against each other?
Walasek and Brown (2023) described such attributes as in-
commensurate. Similarly, Hayes et al. (2024) demonstrated
how manipulating attribute commensurability influences the
size of the attraction effect in preferential choice domains.
These studies further underscore the significance of attribute
comparability in the context effect.

Chang (2013) summarized five distinct ways the term in-
commensurability has been used in the literature, none of
which allow for a trade-off between incommensurate attribute



values. Attributes can be incommensurate for one or more of
the following reasons:

• Non-compatibility: Attributes cannot be compared di-
rectly.

• No super-value: There is no overarching metric to unify
the attributes.

• Trumping/discontinuity/threshold lexical superiority:
One attribute dominates the other(s) beyond a certain
threshold.

• Nonsubstitutability/non-compensability: Attributes can-
not substitute or compensate for one another.

• No common currency: Attributes lack a shared unit of
measurement.

However, even when attributes are technically commensu-
rate according to these definitions, trade-offs between them
can still be challenging due to representational noise, which
makes it difficult to assess the absolute values of the options’
attribute values (Simonson, 2008). For instance, Rath et al.
(2024b) used a stimulus where two attributes were presented
in the same units (distance), but participants found it difficult
to determine how much of a change in one attribute could
compensate for a change in the other. This demonstrates that
trade-off difficulty can arise even when attributes are nomi-
nally commensurate.

In this experiment, we use a combined perceptual-
numerical stimuli set to explore how trade-off difficulty can
manifest even when attributes share a super-value. Specifi-
cally, we use the area of alloy pieces represented by filled cir-
cles as the perceptual attribute and their price in integer values
as the numerical attribute, where the price per unit area serves
as the super-value. This design allows us to test the role of
attribute-trade-off difficulty in producing the attraction effect
in combined perceptual-numerical stimuli set.

The definitions of (in)commensurability provided by
Chang (2013) treat incommensurability as a binary vari-
able. However, we argue that trade-off difficulty exists on
a continuous scale, reflecting the phenomenological chal-
lenge of comparing attributes. Therefore, we prefer the term
attribute-trade-off-difficulty over attribute commensurabil-
ity, as it better captures the gradational nature of this con-
struct.

Most models of choice propose that in a multi-alternative
comparison, alternatives are compared pair-wise (Evans et al.,
2021; Kornienko, 2013; Noguchi & Stewart, 2018; Ronayne
& Brown, 2017; Russo & Dosher, 1983; Trueblood et al.,
2014; Wollschläger & Diederich, 2012). Building on this as-
sumption, we hypothesized that an increased inter-attribute
trade-off difficulty in our stimuli would lead to asymmetry in
the difficulty of choice in different pairs, ultimately leading
to the asymmetric-dominance effect.

Methods Thirty-six participants (Mean age = 21.11 years,
SD = 3.42; 27 male, 9 female) with normal or corrected-to-
normal vision gave informed consent and took part in the ex-
periment. After the exclusion of 6 participants due to their

low scores (< 0.8) in the catch trials, the analysis was done
on data from 30 subjects.

The experiment was designed using JavaScript and con-
ducted on laboratory computers with screen resolutions of
1920px × 1080px. In each trial, the stimuli consisted of
three different black-filled circles on a white background.
These shapes were arranged in a triangular formation around
the center of the screen, with their vertical positions jittered
across trials. Figure 3 shows an example trial. Participants
were informed that the circular discs were some special al-
loys whose prices were displayed in white at the center of
the disc in arbitrary units. In each trial, the participants were
asked to choose the disc with the lowest price per unit area.
The two attributes that formed that attribute space were the
area of the disc to be evaluated solely based on perception
and the price of the disc displayed at its center.

Figure 3: Example Trial in Experiment 1

Following Trueblood et al. (2013), one set of circles was
created using a bivariate normal distribution with a mean area
of 28000 pixels and a mean price of 28. The variance for the
area and the price were 28000 pixels and 28, respectively, and
there was no correlation between the variances, allowing for
variability in the task. A second set of circles were matched
in price per unit area but were twice the area of the first set.
One of these sets was considered the target, while the other
was the competitor.

The third set (i.e., decoy circles) was created such that, in
the attribute space, it was placed close to the smaller circle
for half the trials and close to the larger one for the remaining
half, effectively creating two sets of contexts. We included all
three types of decoys: range, frequency, and range-frequency
decoys (Huber et al., 1982). Participants completed 36 trials
in each of the contexts. Additionally, 12 catch trials were in-



cluded as exclusion criteria, in which one circle in each trial
clearly had the lowest price per unit area. The presentation
order of all 84 trials was randomized. Participants were in-
structed to respond as fast and as accurately as possible using
the left, up, and right keys.

Results and Discussion A one-tailed t-test was performed
to compare the RST1 values against the null value of 0.5. The
mean RST (M = 0.591, SD = 0.109) was significantly higher
than the null value of 0.5; t(29) = 4.593, p < 0.001. The
effect size was large (Cohen′sd = 0.839). A Bayesian one-
sample t-test further supported this result, yielding a Bayes
factor of BF10 = 273.75 (using a Cauchy prior with r = 0.4),
indicating strong evidence in favor of the alternative hypoth-
esis (H1 : RST > 0.5). Figure 4 depicts the violin plot for the
overall RST values.

The results provide further evidence that perceptual stim-
uli are just as effective as numerical stimuli in producing
the standard attraction effect. More importantly, they show
that increasing the inter-attribute trade-off difficulty produces
the asymmetric dominance of the decoy and, hence, the
asymmetric-dominance effect. This experiment could be
treated as a conceptual replication of (Rath et al., 2024b)
while violating yet another definition of incommensurability.

Figure 4: RST Distribution in Experiment 1

Experiment 2
Introduction We assume that, compared to stimuli used in
previous studies that failed to produce a positive attraction
effect in the triangular arrangement, our stimuli introduced
greater competitor-decoy (CD) comparison difficulty due to
increased attribute-trade-off difficulty, leading to asymmet-
ric dominance of the decoys. Both Rath et al. (2024b) and
the current study followed a similar approach to increase CD

1Throughout the paper, we used the Relative Share of Target
equal weight (Katsimpokis et al., 2022) as the metric for the attrac-
tion effect.

comparison difficulty and report positive effects. However,
when attribute-trade-off difficulty is increased by the choice
of attributes, target-competitor (TC) comparisons also be-
come more difficult, for the same reason that CD comparisons
become challenging. This introduced a potential confound in
both studies.

Thus, we cannot definitively claim that the positive effect
observed in our study is due to the restoration of asymmetric
dominance, nor can we attribute the negative effect in previ-
ous studies solely to its absence. When TC comparisons are
easy, decision-makers can form a clear prior preference be-
tween the target and the competitor. This, in turn, diminishes
the effect of an added undesired decoy (Huber et al., 2014;
Rath et al., 2024a). We have not yet identified perceptual
stimuli where CD comparison difficulty can be made inde-
pendent of TC comparison difficulty. In Experiment 2, we
used fractions, which offered us greater flexibility to control
for this confound.

People’s ability to process numbers very quickly is advan-
tageous in many aspects of decision-making and informa-
tion processing (Feigenson et al., 2004; Moyer & Landauer,
1967). However, it can interfere with understanding one ab-
straction that mathematics has built using numbers — frac-
tions. People find fractions difficult to understand and reason
about (Behr et al., 1984; Lortie-Forgues et al., 2015). One
reason for this is because the symbolic numbers present in
fractions are not sufficient to determine their magnitude. A
small fraction can consist of larger numbers, for example,
1283
11823 and a larger fraction can include smaller numbers, for
example, 1

3 . In this example, both the numerator and the de-
nominator in the larger fraction contain clearly larger num-
bers, and it is often the choice students make when asked
to pick the larger fraction. This is called the natural num-
ber bias, the automatic processing of symbolic number can
interfere with how people judge the magnitude of fractions
(Alibali & Sidney, 2015; Ni & Zhou, 2005; Reinhold et al.,
2023). To properly compare fractions, one should suppress
the urge to solely compare the magnitudes of the number, and
integrate these magnitude representations with the rules of
fractions. Studies have since also found the existence of a re-
verse natural number bias, where people judge the fractions
with smaller numbers as the larger fractions, a likely over-
correction to the natural number bias (Barraza et al., 2017;
DeWolf & Vosniadou, 2011; DeWolf & Vosniadou, 2015;
Obersteiner et al., 2020). However, evidence also suggests
that people are also able to perceive the holistic magnitude
of a fraction, as the strength of the natural number bias de-
creases the greater the distance between two fractions being
compared (Barraza et al., 2017; Park et al., 2021).

People’s perceptions of the magnitudes of fractions are also
determined by the strategies they know, by the strategies they
use, and by the properties of the fractions themselves, and
how the properties of the fractions interact with their strate-
gies (Fazio et al., 2016; Obersteiner et al., 2022; Reinhold
et al., 2023; Siegler et al., 2013). When asked to report



how they compare fractions, people report a variety of strate-
gies that range from componential, focusing on values and
magnitudes of the numerators and denominators, to holistic,
which involve determining the magnitude of the fraction it-
self (Obersteiner et al., 2022). Sometimes, these strategies
are valid, for example, a componential strategy when people
compare the multiplicative relationship between numerators
of the fractions and compare it to the denominators to make
a judgement. However, people also use heuristics that are not
valid for all fractions. One example is a frequently reported
holistic strategy called benchmarking, where they find a fa-
miliar fraction (benchmark) close to the fraction they need
to compare, and compare the other fraction (or a benchmark
close the other fraction) to this benchmark (DeWolf & Vos-
niadou, 2011; Liu, 2018; Obersteiner et al., 2020). Errors
in finding the nearest benchmark can invalidate this strategy.
People also often compare the differences between the nu-
merator and denominator of each fraction and compare them
to determine which of the two fractions is greater (Gómez &
Dartnell, 2019; Obersteiner et al., 2022). This componential
strategy, called gap comparison, fails, for example, when 31

71
is compared to 13

23 . This rich complexity in how people pro-
cess fractions allows us to manipulate the difficulties of pair-
wise comparisons. For example, comparisons with higher ra-
tio distances are easier, comparisons with common compo-
nents are easier, comparisons with divisible numerators and
denominators are easier, etc.

This experiment serves three main purposes. First, to
blur the numerical-perceptual distinction, we aimed to test
whether the attraction effect could be activated or deactivated
through a separate manipulation. Second, we sought to con-
trol for the confound introduced in Experiment 1, and the use
of fractions provided greater flexibility in this regard. Third,
we employed a within-subjects design to control for individ-
ual differences.

In this design, participants experience both CD compari-
son difficulty (Diff CD): high and low conditions, effectively
controlling for TC comparison difficulty. TD comparison was
easy in both conditions. We hypothesize that in the Diff CD:
High condition, we will observe a positive attraction effect,
whereas in the Diff CD: Low condition, we expect a null ef-
fect. We also predict a significant difference in RST values
between these two conditions.

Methods Fifty-five participants (Mean age = 21.63 years,
SD = 3.33; 39 male, 16 female) with normal or corrected-
to-normal vision gave informed consent and took part in the
experiment. None was excluded in the final analysis.

The experiment was designed using JavaScript and con-
ducted on similar laboratory computers as in Experiment 1.
Figure 5 shows an example trial.

To determine which fraction triplets to present to partici-
pants, we first needed to operationalize how easy it is to per-
ceive the holistic magnitude of a fraction, i.e., the super-value
of a fraction. This was determined as the geometric mean of
a series of conditions, where the presence of a condition was

represented as 1.05 and the absence as 0.05 instead of 1 and
0 to prevent the geometric mean from evaluating to 0 in the
absence of any condition. The conditions were: (1) when the
number of common factors between the numerator and de-
nominator is greater than or equal to 4, (2) when the ratio
represented by the fraction is ±0.15 of a whole number, (3)
when the numerator is perfectly divisible by the denominator,
and (4) when the denominator was divisible by 5.

We also defined the ease of comparing two fractions to
each other. Similarly, this was the geometric mean of a se-
ries of conditions with a 0.05 offset. The conditions were: (1)
the fraction sharing a common component (this factor was
weighted 4 times more than the others), (2) the comparison
being gap congruent (the item with the larger numerator and
denominator difference being the correct answer) and the ra-
tio between the gaps of the two fractions being greater than
or equal to 1.5, (3) the ratio between the numerators being
less than or equal to 5.05 (this includes the most well-known
portion of the multiplication table) and ratio between the nu-
merators being ±0.15 of a whole number, (4) the same for
the denominator, and (5) the ratio between the holistic mag-
nitudes of the fraction being greater than 2 (very distant) or
close to 1 ±0.15 (very close). These scores, informed by
research on how people use strategies to compare fractions,
helped determine the items present in the two conditions.

We ensured that all stimuli in each condition fell between
ease ranges, which greatly reduced the potential of confounds
playing a role in the effect we observed. To determine the
triplets, we first started with a set of all fractions with numer-
ators and denominators with whole numbers greater than 1
and less than 100, where the numerator was not equal to the
denominator. Using this set of fractions, we randomly sam-
pled potential trials and assessed them through our criteria
until we generated 30 items. For items in the CD comparison
difficulty: low condition, we ensured that the decoys were
similarly easy to compare with the target and the competitor,
i.e., the ratio between the ease scores for target-decoy and
competitor-decoy comparisons were constrained to be less
than 2 and we set a minimum ease value for these compar-
isons (0.4). For the CD comparison difficulty: high condi-
tion, the ratio between the ease scores were constrained to
be greater than 4, that is, the decoy was significantly easier
to compare with the target fraction than the competitor frac-
tion. All target and competitor ratios were constrained to be
between 2 and 5.5. However, the ratios themselves were con-
strained to not be ±0.15 of a whole number ratio.
Results and Discussion We conducted two two-tailed one-
sample t-tests on RST values from both blocks (Diff CD:
High, Diff CD: Low) against the null value of 0.5.
For Diff CD: Low, RST(M = 0.507,SD = 0.081) was
not significantly different from 0.5, t(54) = 0.597, p =
0.553,Cohen’s d = 0.080. Figure 6 shows two violin plots
for the two block conditions. The Bayesian one-sample t-test
supported this result, with a Bayes factor of BF10 = 0.176
(using a Cauchy prior with r = 0.7), indicating strong evi-



Figure 5: Example Trial for Block H in Experiment 2

dence for the null hypothesis (H0 : RST = 0.5). For Diff CD:
High, RST(M = 0.545,SD = 0.095) was significantly differ-
ent from 0.5, t(54) = 3.468, p = 0.001,Cohen’s d = 0.468.
The Bayesian test yielded a Bayes factor of BF10 = 26.808
(using a Cauchy prior with r = 0.7), indicating strong evi-
dence for the alternative hypothesis (H1 : RST ̸= 0.5). We
next conducted a paired t-test between the RST values from
the two conditions. The RST difference (M = 0.038,SD =
0.093) was significantly different from 0, t(54) = 3.010, p =
0.004,Cohen’s d = 0.410.

To test for order effects, we performed a Monte Carlo per-
mutation test. We randomly shuffled the block order assign-
ments while keeping the within-subject block structure intact
and repeated this process over 10,000 permutations to gener-
ate a null distribution of the test statistic. The p-value, calcu-
lated by comparing the observed statistic to the null distribu-
tion, was 0.158, indicating no significant order effect on RST
values.

Note that our primary goal, even in the Diff CD: High
block, was not to show how fractions can produce context
effects. To ensure all constraints for the manipulation were
met, we had to relax the ease scores in TC comparisons a bit,
which could have allowed relatively easy comparisons for a
few participants, reducing the overall effect. We believe a
much stronger positive attraction effect could be produced us-
ing fractions if we solely aim for it and design the stimuli set
accordingly.

General Discussion
Aiming to explore context effects in both numerical and per-
ceptual settings, we initiated two experiments based on the
intuition that there is no fundamental distinction between the

Figure 6: RST Distributions for two blocks in Experiment 2

two and that the attraction effect is ubiquitous across do-
mains. In Experiment 1, we successfully produced a strong
positive effect using stimuli that incorporated both perceptual
and numerical attributes, where inter-attribute trade-offs were
difficult. In Experiment 2, a within-subject design, we ex-
tended this to numerical stimuli using fractions. We demon-
strated that the standard attraction effect could be toggled
on and off by manipulating the asymmetry between target-
decoy and competitor-decoy comparisons while controlling
for a confound—the target-competitor comparison. Exper-
iment 1 highlighted the role of inter-attribute trade-off dif-
ficulty, a concept distinct from traditional definitions of in-
commensurability, which typically treat commensurability as
a binary variable—either allowing or disallowing trade-offs
entirely. In contrast, we operationalized inter-attribute trade-
off difficulty as a continuous variable, capturing gradations
in how difficult it is to compare attributes. Experiment 2 not
only blurred the distinction between numerical and percep-
tual domains but also leveraged findings from education and
mathematical cognition research on fractions to manipulate
the attraction effect. Together, these experiments deepen our
understanding of context effects by revealing a key cognitive
mechanism behind the phenomenon, reinforcing that super-
ficial distinctions between numerical and perceptual contexts
are less consequential than previously thought. A direct ap-
plication of these findings lies in consumer marketing, where
tailored packaging and labeling can harness decoy effects to
influence consumer choices. Ultimately, our results support
the idea that higher inter-attribute trade-off difficulty facili-
tates the attraction effect—both by increasing the difficulty
of choice between targets and competitors and by introducing
asymmetries in pairwise comparisons between target-decoy
and competitor-decoy pairs, corroborating the pairwise com-
parison argument in choice models.
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