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Abstract

This paper presents results from in silico experiments trying to uncover the mech-
anisms by which people both succeed and fail to reach consensus in networked
games, for network structures produced by a variety of generative mechanisms. We
find that the primary cause for failure in such games is preferential selection of infor-
mation sources. Agents forced to sample information from randomly selected fixed
neighborhoods eventually converge to a consensus, while agents free to form their
own neighborhoods and forming them on the basis of homophily frequently end up
creating balkanized cliques. Small-world structure attenuates the drive towards con-
sensus in fixed networks, but not in self-selecting networks. Preferentially attached
networks show the highest convergence to consensus, thereby showing resilience to
balkanization even in self-selecting networks. We investigate the reasons for such
behavior by altering graph properties of generated networks. We conclude with
a brief discussion of the implications of our findings for representing behavior in
socio-cultural modeling.

Keywords Social preference - Preference learning - Agent-based modeling - Clique
formation - Balkanization - Filter bubbles - Polarization - Network hubs - Opinion
dynamics.

1 Introduction

The rapidly advancing digital era of the 21st century reveals profound socio-cog-
nitive divides, driven by polarization, filter bubbles, and the formation of cliques.
Polarization reflects the increasing divergence of societal and political viewpoints,
fragmenting ideological landscapes into opposing extremes (DiMaggio et al.
1996). In the realm of social media, this phenomenon is amplified by algorithmic
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personalization, transforming it into a potent force that drives societies towards divi-
siveness (Zuiderveen Borgesius et al. 2016). In the same vein, filter bubbles, a term
birthed by Pariser (2011), encapsulate the unsettling reality of intellectual isolation,
which now pervades the World Wide Web. Algorithmically generated digital echo
chambers present users with content that aligns with their preexisting preferences,
reinforcing self-confirming information loops. Clique formation materializes as
individuals, sharing common attributes or beliefs, clustering together in cyberspace,
resulting in islands of homogeneity (McPherson et al. 2001). Homophily, an age-old
sociological phenomenon, has experienced an exponential surge due to the reduc-
tion of friction in communication in cyberspace, exerting profound influences on
society, politics, and cognitive processes (Sunstein 2017).

Previous efforts to comprehend and address these phenomena have predominantly
adopted social and cultural perspectives, examining how societal structures, media
environments, and cultural contexts shape their manifestations (DiMaggio et al.
1996; McPherson et al. 2001). However, there has been a noticeable lack of focus on
how these phenomena impact and are influenced by individual cognitive and infor-
mation processing mechanisms. This gap in the literature signals an uncharted fron-
tier in our understanding of polarization, filter bubbles, and clique formation. The
intricate interaction between external stimuli and internal cognitive processes is at
the heart of how individuals navigate their social and informational environments.
As such, understanding these phenomena from an information processing standpoint
is crucial to understand why and when polarization is likely to result in networks of
individuals.

In the context of this paper, we operationalize networks of individuals as graphs
produced by three different mechanisms, two of which make sociological assump-
tions: Erdos—Renyi (ER), Barabasi—Albert (BA), and Watts—Strogatz (WS). ER
graphs, characterized by random connections between nodes, offer a baseline math-
ematical graph model, with no socio-cultural appurtenances, for studying network
dynamics. On the other hand, BA graphs, generated via a preferential attachment
mechanism, exhibit power-law degree distributions, meaning the probability of
encountering highly connected nodes is relatively higher. This aligns with the struc-
ture of social media and other digital networks, where influential individuals gather
larger followings. BA graphs thus have a clear sociological connotation and provide
insights into the dynamics of online communities wherein low social friction easily
permits large inequalities in the degree distribution of connectivity between indi-
viduals. WS graphs, with their small-world architecture, strike a balance between
local clustering and global connectivity, reflecting networks in the real-world
wherein higher social friction reduces the range of degree distributions accessible
to individuals. The small-world property further reflects the interconnected nature
of real-world social networks, wherein individuals can establish connections with
others through short paths, akin to the "six degrees of separation" concept, without
requiring to make a large number of direct connections personally. We examine how
social preferences vary over the course of networked consensus games in all three
categories of graphs in this paper.
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2 Empirical background for this work

The motivation, and the empirical background, for this work comes primarily
from Michael Kearns’ paper, “Behavioral Experiments on a Network Formation
Game”. Kearns et al. (2012) The paper talks about a series of behavioral experi-
ments where 36 human participants had to solve a competitive coordination task
(of biased voting) for monetary compensation. Communication, in these games,
happens only via the game GUI, and only with individuals in one’s assigned
social neighborhood. It has been found that in such cases, where the social
neighborhoods are explicitly fixed, and participants are then asked to achieve a
collective goal, human participants tend to perform well - subjects are able to
extract almost 90% of the value that is available to them in principle. This has led
researchers to conclude that humans are quite good at solving a variety of chal-
lenging tasks from only local interactions in an underlying network (Kearns et al.
2009).

However, when Kearns made a slight change to the game, human performance
deteriorated. The slight change entailed participants having to build the network
during the experiment, via individual players purchasing links whose cost is sub-
tracted from their eventual task payoff. A striking finding is that the players per-
formed very poorly compared to behavioral experiments in which network struc-
tures were imposed exogenously. Despite clearly understanding the biased voting
task, and being permitted to collectively build a network structure facilitating its
solution, participants instead built very difficult networks for the task. This find-
ing is in contrast to intuition, case studies and theories suggesting that humans
will often organically build communication networks optimized for the tasks they
are charged with, even if it means overriding more hierarchical and institutional
structures (Burns and Stalker 1994; Nonaka and Nishiguchi 2009).

These results suggest that humans are able to achieve a collective goal if a
network structure is imposed on them, and they are restricted to communicat-
ing within the fixed neighborhood itself; however, when they are free to choose
people to communicate with, instead of selecting people that will maximize the
chances of global coordination, human participants end up building sub-optimal
networks and fail to coordinate effectively.

3 Social preference formation

Central to our model is the assumption that the inference of social preferences
occurs through the same information processing mechanisms as the inference of
individual preferences. Building upon this assumption, our account relies on two
specific information-processing assumptions.

Firstly, we embrace the principle of inductive inference, which posits that
individuals make decisions by inferring what to do based on their past choices
involving similar options. In our model, agents exhibit this inductive reasoning
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by updating their color preferences based on previous interactions and outcomes,
thereby gradually adjust their preferences over time, resulting in the emergence of
distinct color clusters.

Secondly, our model incorporates the concepts of memory growth and memory
decay. Inspired by the workings of human memory, we assume that agents’ memo-
ries of past interactions can both strengthen and fade. Memory growth reflects the
reinforcement of memory traces associated with interactions that led to similar color
preferences, promoting the formation of social ties with like-minded individuals. On
the other hand, memory decay represents the natural process of forgetting, allowing
agents to adapt and respond to changing social dynamics. These memory dynamics
contribute to the evolution of the network structure and the emergence of distinct
color clusters in the dynamic network case.

By integrating inductive inference, memory growth, and memory decay into our
model, we aim to provide a more comprehensive understanding of how cognitive
processes shape social behavior. While our model is a simplified representation of
complex human decision-making, it offers insights into the mechanisms underlying
social preferences and network dynamics.

3.1 Preference inference per iteration

There is now substantial evidence to believe that inductive inference underpins the
construction of several (if not all) mental attributes (Tenenbaum et al. 2011). This
Bayesian approach to cognition was recently applied to the problem of preference
learning (Srivastava and Schrater 2012). Following their notation, an agent’s prefer-
ence for an option is identical to the probability that it is desirable, p(rlx), and can
be calculated by summing out across evidence of desirability observed in multiple
contexts,

Y ceP(rlx, Opxle)p(e)
Yeec P&lO)p(c)

Here C is the set of all contexts offering x as a possible choice. The desirability
probability p(rlx, c) simply considers the frequency with which the agent had previ-
ously preferred option x in context c, the option probability p(xIc) expresses the fre-
quency with which the option x is observed in context c, and the context probability
p(c) expresses the base rate of context c in the agent’s environment.

p(rlx) = (1)

3.2 Memory decay and memory growth through iterations

In the context of the model, memory decay and memory growth are parameters that
control how the memory matrix evolves over time. The role of these parameters
comes in particularly in the case of dynamic network.

Memory decay signifies the gradual decrease in the strength of an agent’s mem-
ory of past interactions. It models the natural forgetting process in human memory.
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A higher memory decay rate means that memories of past interactions fade more
quickly, while a lower decay rate means that memories persist for a longer time.

new_memory = memory X (1 — memory_decay) 2)

Memory growth, on the other hand represents the strengthening of an agent’s mem-
ory of past interactions that have led to similar color preferences. It captures the idea
that repeated experiences of similarity reinforce memory traces. A higher memory
growth rate means that agents are more likely to remember and interact with agents
who have similar color preferences, while a lower growth rate means that memory is
less influenced by past interactions.

new_memoryli,j| = memoryli, j]+

(€)

(similar_preferencesli, j1 X memory_growth)

where:

— new_memory[i, j] is the updated memory value for agent i’s memory of agent j,

— memory([i, j] is the previous memory value for agent i’s memory of agent j,

— similar_preferencesl[i, j] is a measure of the similarity between agent i’s and
agent j’s color preferences,

— memory_growth is a parameter controlling the rate at which memory is rein-
forced.

We introduce an exponential decay factor to the memory distances, which represents
the influence of memory decay (Ramamurthy et al. 2006). The memory weights are
then calculated as the product of the exponential decay factor and the corresponding
memory values between agents. This way, we emphasize stronger memories while
accounting for the decay process.

The use of the exponential decay factor ensures that closer memory distances and
stronger memory values lead to higher memory weights, indicating a higher prob-
ability of selecting an agent as a neighbor. The normalization step ensures that the
memory weights sum up to 1, providing a valid probability distribution for neighbor
selection. In doing so, the neighborhood selection process takes into account both
memory growth and memory decay, resulting in the formation of connections based
on the strength and recency of agents’ memories.

Let’s go through the structure and flow of the simulations to understand exactly
where these mechanisms are invoked, and how.

4 Simulation details

We run our simulations in two conditions - fixed and dynamic. For both conditions,
agent initialization, preference assignment, and neighborhood assignment are the
same. The important difference that comes into picture in case of dynamic condi-
tions is that the agents are free to sample and select their own neighbors. This pro-
cess is driven by homophily.
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The simulations begin with initialization of ER, BA, and WS graphs having 36
nodes each. Each of these nodes represents an agent, and at the outset, is randomly
assigned preference for one out of four colors. The agent in our simulations has
three major attributes - preference, neighborhood, and memory. Preference is initial-
ized as a vector of O s, with 1 at the preferable index. Neighborhood is represented
as an adjacency matrix of agents. Likewise, memory is also initialized as an adja-
cency matrix, to indicate the memory strength being the highest between two agents
that have a link from one to the other. The memory matrix evolves over iterations
using two parameters - memory decay and memory growth - both of which have
been discussed earlier. These calculations give us the updated memory matrix for
each agent, which is then used for finding new neighbors for the next iteration (in
the case of dynamic condition). The overall goal of the simulations is to record con-
sensus, and see how the trends of consensus or convergence vary among different
graph types. So, the task is for all agents to converge to one color, in both fixed and
dynamic conditions. Check Fig. 1 for a quick walkthrough of the simulations.

In the fixed network conditions, the neighborhood of an agent is fixed from the
beginning - it is the neighborhood that was assigned during network initialization.
As a result of this, the agent is forced to interact only with their immediate neigh-
bors. The agents update their preferences based on the preferences of their immedi-
ate neighbors, based on the preference inference mechanism described above. This
goes on for a fixed number of iterations (which is kept at 50 for most simulations).

Begin
simulation For each agent - Calculate and
invoke preference store
update mechanism convergence
Network rates
Generation l
l For each agent -

invoke memory

Preference update mechanism Max
Assignment iterations
l reached?
No
Fixed n/w No . For each agent -
AT, —  invoke nbd. update
mechanism
Yes
l Yes
For each agent - Calculate and Miioms
invoke preference =~ ——— store ¢ :Z’;::’::‘
update mechanism convergence p YN
rates
End
[ No l simulation

<

Fig. 1 Flowchart of the simulation
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The convergence is calculated and recorded across iterations and across simulations
to get a holistic idea of the trend.

In the dynamic network condition, on the other hand, first the neighborhood
update mechanism is invoked for each agent, keeping in context the memory till the
previous iteration. The neighborhood update happens based on the distance between
agents (which is used as a measure of similarity between agents). The idea here is
to facilitate connection and link building between agents with similar preferences.
Then, based on the new neighborhood, the memory matrix is updated. This is done
using equations 2 and 3. The similar preferences parameter that is used is a measure
of how similar two agents are. The similarity of preferences plays a role in increas-
ing the memory strength between two agents. This increase happens by a factor of
memory growth, which can be played around with to increase the effect of homoph-
ily on memory update. This updated memory then becomes the basis for neighbor-
hood update for the next iteration, and this goes on for a fixed number of iterations.

Memory strength is bounded between O and 1 to prevent numerical instability,
and also consistent with known limitations on the upper bound of memory strength
for human memory. Memory growth and decay parameters were selected for various
network sizes by trial and error, with values of between 0.01 and 0.1 for the memory
decay parameter and between 0.1 to 0.5 for the memory growth parameter produc-
ing results consistent with those presented in this paper. All simulation and analysis
code relevant to the reproduction of these results are available at this OSF repos
itory to enable researchers to follow our parameter choices and reproduce our results
exactly.

4.1 Distance metric

In this model, memory-based neighbor selection is guided by the Euclidean distance
between agents’ preferences. The Euclidean distance is computed using the formula:

Z(pik — i)’
k=1

where d; represents the distance between agents i and j, and p; and p;, are the pref-
erence vectors of the agents. These distances are used to rank potential neighbors,
with agents selecting their closest neighbors based on these computed values. This
ensures that agents with more similar preferences are prioritized in the neighbor-
hood formation process, aligning with the principle of homophily.

Unlike what might be expected in other models, the current implementation does
not apply an exponential decay function to these distances when selecting neighbors.
Instead, raw Euclidean distances are directly used for sorting and identifying the
closest agents. However, an exponential decay transformation could be incorporated
in future iterations to further emphasize the impact of proximity in preference space.

For memory updates, the model uses cosine similarity between agents’ prefer-
ences, reflecting the psychological basis of similarity in cognitive alignment. The
cosine similarity is computed as:
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ZZZI PikDjx
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This similarity measure allows for the reinforcement of memory between agents
with highly aligned preferences. Together, the use of Euclidean distances for neigh-
borhood selection and cosine similarity for memory updates ensures that the model
dynamically adapts to both spatial proximity and cognitive alignment, providing a
robust framework for the evolution of social preferences.

similarity(i, j) =

4.2 Agent link changes in dynamic settings

In dynamic networks, agents adapt their links based on the evolving psychological sali-
ence of their interactions and the principle of homophily, which emphasizes preference
similarity. Each agent is limited to a maximum number of neighbors (e.g., 4 in a net-
work of 36 nodes, or 10%). This constraint ensures the network remains sparse and
interpretable while reflecting real-world limitations on social connections. Link forma-
tion is driven by a memory-based probabilistic mechanism where memory weights for
potential neighbors are calculated using an exponential decay function that incorpo-
rates both the psychological similarity (preference distance) between agents and the
strength of their past interactions. These weights are normalized to ensure they form a
valid probability distribution, with agents more likely to connect with those who share
similar preferences and have stronger interaction histories.

When agents reach the maximum number of allowable neighbors, they periodi-
cally reassess their network connections. In such cases, agents evaluate their current
neighbors against potential new ones based on updated memory weights and preference
similarities. If a new neighbor with higher salience or similarity is identified, the agent
replaces one of their existing connections with the new one. This dynamic mechanism
ensures that agents’ networks evolve in response to changes in their preferences and
interactions, reflecting the adaptive nature of social ties. Memory growth strengthens
connections with similar neighbors, while memory decay allows the fading of less rel-
evant connections over time.

This dynamic link adaptation mechanism, combined with the homophily-driven
selection of neighbors, promotes the formation of clusters based on psychological sali-
ence. It should be noted that there is no explicit cost for link formation for the agents in
our network — which one would expect in real-world settings, in the form of cognitive
costs if nothing else. Considering this is a simplistic model, we have not added incen-
tives or punishments for link building, but doing that surely constitutes a future direc-
tion for this project.
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5 Demonstrations and results

In a typical consensus game, members of a group are permitted to preferentially
assign themselves one of a small set of colors, but the entire group is rewarded
if it eventually converges to one color. Kearns et al. (2012) finds that people are
very good at maximizing the group’s welfare across a variety of network struc-
tures and incentives, so long as the set of their neighbors is held constant: human
subjects achieved approximately 90% of the theoretically maximum payout attain-
able by a perfectly coordinated group.

To assess the behavior of our social preference learning agents, we simulated
an environment containing 36 agents, each randomly endowed with one of four
color preferences. In other words, for a given agent i, the initial p;(r|x) = 1 for one
x, and = O for the three other xs (colors). The agents could interact with any of the
other agents in a sequence. The possible agents with which the initiator i interacts
with are, from his perspective, the context; thus, interaction partners (respond-
ers) are considered ¢ and the interaction is selected by sampling the available
neighbors. For simulations using fixed networks, each agent’s neighborhood was
specified and it could not be changed during the course of the iterations. Dur-
ing an interaction, the responder indicates to the initiator his preferred color
(arg max[p(r|x, c)]), and the responder received no information. At each time step,
the initiator updates their own color preferences by marginalizing across the pref-
erences expressed by their neighbors using the preference inference computation
mentioned earlier.

We simulate neighborhoods randomly using all three types of graphs - ER,
BA, and WS - 1000 times, and report results using the average convergence (the
greatest number of nodes converging to a particular color divided by the total
number of nodes in the graph at any point in time) obtained for 50 iterations
of the consensus game played on each graph for all three categories of graphs
mentioned. Even in the absence of an explicitly specified reward for group con-
sensus, our simulation results show that individual agents use the preferences of
their neighbors to change their personal preferences, until consensus is reached.
See Fig. 2 to get an idea of how the network evolved during the fixed neighbor-
hood condition. On the left you see the initial state of a WS-generated network in
the fixed condition. The network starts off with different agents being randomly
assigned preference for one out of four colors. As you can see on the right of
Fig. 2, the final network state shows all agents reaching consensus to one pref-
erence. Figure 3 shows the convergence trend for all three network types in the
fixed neighborhood condition. As can be observed, all network types converge
to one opinion well within the maximum number of iterations. Consistent with
the existing literature (Tang et al. 2013), we find that the color with the greatest
representation in the initial condition of each graph wins most frequently (this
result simply verifies that under a fixed network structure, our model appropri-
ately propagates beliefs). Out of the 1000 simulations we ran, we find that regard-
less of the starting network type, the proportion of simulations where initially
dominant color ended up winning were high across graph types. We find that 622,
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Watts-Strogatz (Fixed) - Initial State Watts-Strogatz (Fixed) - Final State
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Fig.2 On the left is the initial network structure for the fixed condition in one of the trials using the
WS graph. On the right is the final network after agents iteratively went through a series of preference
updates with a fixed neighborhood. We see the network converges to one preference well within the max-
imum number of iterations for the simulation
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Fig.3 The plot shows convergence over time for all the fixed network simulations for all three types of
graphs. Shaded area represents 95% CI after 1000 simulations. We see convergence for all three graph

types
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690, and 712 simulations resulted in color with the greatest initial representation
winning for WS, ER, and BA networks respectively. It should also be noted that
the simulations where initially dominant color did not win were the simulations
where intiailly, two colors had almost equal representation - so we see the other
color winning in those runs. We also find that the rate of convergence to consen-
sus is directly proportional to the degree of nodes on average in all three types of
graphs.

But what happens when agents are free to choose their neighbors? When (Kearns
et al. 2009) relaxed the fixed network structure, such that subjects could select which
of their neighbors they wished to receive information about, they found that coordi-
nation suffered massively, with efficiency dropping to about 40%. It turns out that
while humans are extremely good at adapting their preferences to existing network
structures, something about the process of social link formation causes this facility
of coordination to break down.

We find similar results from our simulation experiment across a broad range of
parameter values for memory growth and memory decay. Since network connec-
tions were now permitted to be dynamic, agents updated their neighborhoods using
encounter information throughout the simulation. At each model iteration, the pro-
pensity for interacting with other agents changed, and so did their current prefer-
ence, using the computation for p(rlx) as above. See Fig. 4 - agents start out with a
fixed WS network, and are then allowed to sample from other agents to update their
neighborhood and connections based on preference homophily. As a result of this,
the final network state (on the right of Fig. 4) turns out to be balkanized. Similar
results stand for other two networks - BA and ER - too in the dynamic condition. In
the fixed condition, on the other hand, the initial networks converge to one color, as
the convergence trend from Fig. 3 shows, which is mostly the majority color of the
initial network.

When updating preferences in fixed network conditions, agents performed the
computation as suggested by Equation 1, and that was enough to get them to global

Watts-Strogatz (Dynamic) - Initial State Watts-Strogatz (Dynamic) - Final State

Fig.4 On the left is the initial network structure for the dynamic condition in one of the trials using the
WS graph. On the right is the final network after agents iteratively went through a series of neighborhood
updates and preference updates. We see the network stabilize into a balkanized state, instead of converg-
ing on one preference, well within the maximum number of iterations for the simulation
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convergence - even in absence of any specified rewards. However, in the case of
dynamic networks, when agents were free to choose their neighbors in every itera-
tion, agents retain memories of past interactions, enabling them to recall and poten-
tially favor agents with whom they have had shared color preferences in the past.
This memory retention allows for the persistence of social ties and the potential for-
mation of clusters based on shared preferences. This contributes to the reinforce-
ment of existing social ties, potentially leading to the emergence of cohesive clusters
of agents with similar color preferences. This is the case for ER, BA, as well as
WS graphs. However, there is a curious differentiation that can be observed when
we look at the convergence asymptote value for the three types of graphs across all
simulations and all iterations - see Fig. 5 above.

We see that Barabasi-Albert networks show convergence to a higher asymptotic
value compared to Watts-Strogatz as well as Erdos-Renyi networks. Considering the
structural differences in how the three graphs are generated, we find an interesting
explanation for this difference. What makes the BA graph different from the other
two is its degree distribution, which follows a power law - thereby increasing the
probability of finding nodes that are thickly connected with many neighbors, com-
pared to ER graphs, where the degree distribution is binomially (approximately nor-
mally) distributed. Likewise, with WS, we have a small world structure, yielding a
close to uniform degree distribution.

Avg. Convergence Trend with Time with ClI (Dynamic Network)
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Fig.5 The plot shows convergence over time for all the dynamic network simulations for all three types
of graphs. Shaded area represents 95% CI after 1000 simulations. We see all three network types fail to
reach consensus, with the BA-generated networks showing more resilience to balkanization, or a higher
degree of convergence, than the other two

@ Springer



Characterizing the roles of preference homophily and network...

For the consensus game, all that matters is the local neighborhood - so, if a node
is thickly connected, there is a high chance that it is connected to nodes that have
varying colors. If such a node switches over, it’s going to have a lot of impact on the
rest of the graph. Since we are more likely to see this sort of highly trusted or highly
influential node in a BA network than in ER or WS graphs, we see a higher conver-
gence asymptote for BA than ER or WS graphs.

Thus, we find that the same algorithm, when allowed to work with a fixed network
structure, performs information coordination efficiently, whereas when allowed free-
dom to preferentially create local network neighborhoods, agents behave in locally
optimal ways that reduce global coordination. We believe these findings explain to
a considerable extent the mysterious gap in coordination performance in Kearns’
networked game experiments: Agents, and likely humans, assure themselves that
they have equilibrated to the consensus preference through sampling the preference
of their neighbors. When forced to consider all neighbors, they must necessarily
engage with all the information present in their neighborhood; when free to choose,
they end up restricting communication with neighbors who share their preference.

These findings, and the crucial difference in network behavior between BA vs. the
rest of the graphs, particularly WS, in the dynamic neighborhood condition, led us
to hypothesize the role of presence of hubs in the network in facilitating the overall
consensus. The presence of hubs, and as a result of it, a power-law degree distribu-
tion in BA networks as opposed to WS networks could, perhaps, have something to
do with this difference? We tested out this hypothesis by structurally modifying BA-
and WS-generated networks to bring about the desired structural changes, i.e., intro-
duce hubs to WS, making the degree distribution more power-law-like and remove
hubs from BA, making the distribution more flat, so to say.

6 Role of hubs in overall network consensus

To understand the distinct behaviors of agents in various network structures, par-
ticularly in the BA and WS models, we developed a new hypothesis. This hypoth-
esis posits that the presence of hubs, which are highly-connected nodes and a defin-
ing feature of the BA model, may significantly influence these behavioral patterns.
Drawing on insights from social (network) psychology, we suggest that hubs could
have a substantial impact on the dissemination of opinions and preferences within
the network.

To rigorously test this hypothesis, we embarked on a series of computational
experiments, aiming to modify the structural properties of networks generated by
both the BA and Watts-Strogatz (WS) models. The primary objective was to alter
the BA networks to make them more homogenous, effectively ’flattening’ the net-
work by reducing the prominence of hubs. Concurrently, we aimed to adjust the WS
networks to introduce a higher degree of skewness, akin to a power-law distribution,
which is typically observed in BA networks. These modifications were intended to
examine how changes in network topology affect the dynamics of opinion formation
and consensus-reaching processes.
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6.1 Implementing network modifications

The modifications to the network structures involved algorithmic alterations to
the network generation processes of both BA and WS models. For the BA model,
this entailed tweaking the preferential attachment mechanism to limit the growth
of hubs. In contrast, for the WS model, we introduced mechanisms to encourage
the development of certain nodes into more hub-like entities, thereby inducing a
skewness in the network’s connectivity distribution.

Here’s how we went about implementing these modifications to WS and BA
generated graphs. For BA graphs, we started by finding the highest-degree node.
Then, we removed one of its edges. Then, to maintain the flatness of the degree
distribution, we find the lowest-degree agent and connect it to a random agent,
based on a coin toss. Based on this implementation, we were able to get a flatter
degree distribution for graphs generated using BA generation mechanism. Fig-
ure 6 shows how the degree distributions changed for the BA graph before and
after implementing these structural modifications.

Likewise, for the WS networks, the goal was to make the degree distribution
more skewed, close to BA’s original degree distribution. To induce such a power-
law-like behavior to our WS graphs, we first went about creating hubs in the WS
generated graphs. We picked the top few nodes having high-degrees and sought
to make them hubs. This was done by adding extra edges to these selected high-
degree nodes. We also probabilistically thinned out the medium-degree nodes to
make the distribution more BA-like and push more nodes towards having fewer
degree. See Fig. 7 for a graphical representation of how the degree distributions
changed before and after the modifications.

If our hypothesis about the role of hubs in driving network consensus has to
stand, the earlier set of simulations should be run on these modified networks,
too. If we find the new set of simulation results to be reflecting the difference
in network behavior such that the modified WS networks facilitate more conver-
gence than the modified BA networks, we can safely say that structural properties
of the network do indeed play a significant role in driving a network of agents to
consensus.

Original BA Graph Degree Distribution Modified BA Graph Degree Distribution
12.5
(%] %]
(] (]
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=2 p=4
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0.0 5 10 6
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Fig.6 The graph on the left shows the degree distribution for a BA generated network with 36 nodes.
The graph on the right shows the degree distribution of the structurally modified BA generated graphs
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Fig.7 The graph on the left shows the degree distribution for a WS generated network with 36 nodes.
The graph on the right shows the degree distribution of the structurally modified WS generated networks

6.2 Running simulations on modified networks

Once the graph were restructured as per our requirements, using the modification
mechanisms described above - such that the BA networks now showed BA-like
properties, and vice versa - we ran the same two-conditions simulation on the new
networks. As earlier, in the fixed condition, agents had a fixed assigned neighbor-
hood from the start, with no flexibility to change it. In the dynamic condition, the
neighborhood selection was based on homophily and on memory mechanisms.
Again, the goal of the game was overall convergence of the network.

Our hypothesis predicts that keeping everything else the same, if we just run
the modified networks through our simulations, things should remain essentially
unchanged for the fixed network condition, while there should be some more con-
vergence for WS networks, and less for BA networks. Essentially, the behavior of
modified-BA should mimic the behavior of original WS in the previous simulations,
and likewise for the modified-WS networks, since the structural properties have
been changed so. The results of simulations, averaged out over 1000 runs, for the
fixed condition are shown in Fig. 8. The trend shows the progression of how con-
verges evolves in the network as a function of iterations. As the prediction would
go, all three network types converge. But interestingly enough, this time, the WS
network converges before the BA network. The WS network also seems to converge
way quicker than the original, un-modified-WS network, as shown in Fig. 2.

In the condition where agents are free to choose their neighbors per iterations,
i.e., the dynamic condition, we find that the effect of hubs and lack of them shows up
in the overall convergence trend. As Fig. 9 would show, The modified-WS network
converges quicker than the BA network this time, with both having modified struc-
tural properties. The results remained consistent across a wide range of number of
simulations over which the results were averaged. Further, the modified WS network
seem to be performing almost equivalent to the actual BA networks that were used
in the previous set of simulation runs. Likewise, the modified BA networks seem to
be faring similar to the original WS networks. In the previous simulations, the con-
vergence trend graph for the BA networks asymptotes to an average convergence of
close to 58%, while for WS it does at close to 51%. In the simulations with modified
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Avg. Convergence wrt Iterations [Convergence Trend] (Fixed Network)
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Fig.8 BA and WS here refer to structurally modified BA and WS networks. The plot shows convergence
over time for all the fixed condition simulations for all three types of graphs, including modified BA and
WS. Shaded area represents 95% CI after 1000 simulations. We see convergence for all three graph types

network structures, the modified-BA graph outperforms and the convergence graph
asymptotes at close to 56%, as compared to close to 65% for the modified-WS graph.

The convergence trends plotted above give a picture of how the convergence
evolves across iterations for each network type. In simple terms, the graph repre-
sents the trend of how the network state changes from the first iteration to the last
iteration, i.e., how the convergence of the network changes iteratively, averaged over
all the simulation runs. So, the convergence trend plot for a particular network type
asymptoting at, say, 0.60, means that for that network type, on an average across all
simulations, close to 60% of the agents ended up converging to one color.

Apart from this, we also plotted average convergence across simulations on a line
graph, to give a better visualization of the rise and fall of convergences across net-
work types, with and without structural changes. The interpretation of values on this
plot is the same as that of the convergence trend plot, just that the latter gives an
overall, iteration-by-iteration, picture of how convergence evolved, while the former
just plots the average proportion of agents that ended up converging to one color
averaged across all simulations. Figure 10 and 11 give a visualization of the said line
graph showing the final value at which each network type asymptotes, averaged over
1000 simulation runs. We see the iteration-wise trend reflect in the average conver-
gence over simulations picture, too - and reasonably so. In earlier simulations, the
average convergence value for BA networks was consistently more than that for WS
networks, both in the dynamic as well as the fixed neighborhood conditions. This
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Avg. Convergence wrt Iterations [Convergence Trend] (Dynamic Network)
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Fig.9 BA and WS here refer to structurally modified BA and WS networks. The plot shows convergence
over time for all the dynamic condition simulations for all three types of graphs, including modified BA
and WS. Shaded area represents 95% CI after 1000 simulations. We see the modified-WS graphs outper-
form the modified-BA graph in terms of overall convergence across simulations
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Fig. 10 BA and WS here refer to the original, unmodified networks generated using respective mecha-
nisms. The plot shows the average convergence after 1000 simulations for three graph types - ER, origi-
nal BA, and original WS. The error bars represent 95% CI. As we can see, with structural properties
intact, BA networks outperform WS networks in consensus games

trend is depicted clearly in Fig. 10 which plots the average convergence after 1000
simulations for all three graph types, including original BA and WS networks.

After structural modifications, now WS networks had a few nodes with a high-
degree, essentially hubs, and a greater number of nodes with a low-degree. This
introduced hubs in the networks created by the WS generative mechanism. The
modified BA networks, on the other hand, lost their power-law degree advantage,
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Avg. Convergence w/- 95% CI (Fixed Network) Avg. Convergence w/- 95% CI (Dynamic Network)
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Fig. 11 BA and WS here refer to structurally modified BA and WS networks. The plot shows the aver-
age convergence after 1000 simulations for three graph types - ER, modified BA, and modified WS. The
error bars represent 95% CI. As we can see, now with structural modifications, WS networks are outper-
forming BA networks in consensus games

and had a more flatter distribution. This introduced a removal of hubs from the
networks created using the BA generative mechanism.

As Fig. 11 depicts, so does Fig. 9 above, these structural changes brought about
hypothesized behavioral changes in consensus games. We see that the average
convergence for original BA networks is more or less comparable to the modified
WS networks, and vice versa. A quick side-by-side view of Fig. 10 and Fig. 11
will give you a clearer sense of this claim. Without structural modifications, BA-
generated networks converged to an average value of 60 These results, to a con-
siderable degree, support the hypothesis about the influence of structural proper-
ties of the network on global network convergence, generally, and the importance
of presence of hubs in the network in driving overall consensus, particularly.

The next interesting question, or area of exploration, from here could be to
understand hub behavior and hub dynamics. It is evident that hubs are somehow
facilitating more convergence, and therefore their presence is making the network
more resilient to network balkanization. Unearthing the mechanisms behind this
facilitation could be interesting, and easily doable with slight modifications to
our model. In terms of how hubs have been defined in the literature, the hubs that
are playing a role in our simulations - both in the case of original BA and modi-
fied WS networks - can be seen as information mavens, having a large in-degree,
which enables them to aggregate information. If many agents in the network are
close to such information mavens, asymptotic learning is said to happen. Since
the network structures for now don’t differentiate between inbound and outbound
connections, having only bidirectional connection as of now, it is difficult to say
whether these hubs could be acting as social connectors, too, which have a large
out-degree, and that enables them to communicate information to a large number
of agents. Social connectors are presumably useful for asymptotic learning if they
are close to mavens, so that information distribution can happen easily. Acemoglu
and Ozdaglar (2011) All of these claims can be tested with some modifications to
our proposed model of social learning and preference formation.
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7 Discussion

In this paper, we used a memory-based model of social preference learning to re-
produce both the success and failure of agents to attain consensus in a networked
game, based on whether agents were permitted to select their social neighbor-
hood. We showed that networks of agents forced to play with neighborhoods
assigned to them nearly always converged to a consensus color in the game,
although this process was slower for Watts-Strogatz small-world neighborhoods.
We also showed that networks of agents permitted to create their own neighbor-
hoods failed to converge to a consensus, with Barabasi-Albert style preferentially
attached networks reaching more majority consensus than alternative types.

We also saw one possible reason - appealing to the network structure - of such
a difference in behavior between BA and WS networks in the dynamic network
condition. We tested the hypothesis that the presence of hubs could be a factor
in pushing BA to convergence but not WS. Our modified-BA and modified-Ws
networks had degree distribution similar to actual WS and actual BA network,
respectively. We then ran the same simulations on modified networks. We found
that the effect of hubs shows up in two important ways. One, the WS network, in
fixed condition, now converges significantly faster than it did before the structural
modifications. Two, in the dynamic condition, the behavior of modified BA and
WS was essentially a mirror image of their behavior without structural modifi-
cations. These results could potentially point towards the importance of hubs in
networks in order to drive global convergence, or at least facilitate higher conver-
gence levels across the network.

In this work, we have relied on a specific formulation of preference learning
as the primary container of our modeling results (Srivastava and Schrater 2012).
It is quite possible to expand the model to take additional aspects of preference
formation, such as the role of alternative reward structures, into account. It is also
possible to use alternative mathematical specifications for a preference learning
model, such as Instance-Based Learning (Gonzalez et al. 2005), or Adaptive Con-
trol of Thought - Rational (ACT-R) (Anderson et al. 2004). However, models are
ultimately just vehicles for psychological assumptions - and it is these assump-
tions that determine how accurately the model can predict phenomena in the real
world. Thus, the choice of a specific model does not fundamentally change our
conclusions, so long as the assumptions that guide our model are valid and are
themselves representative of the phenomena we seek to understand.

Social networks have previously been analyzed using models rooted in sociol-
ogy and mathematics, such as the Friedkin-Johnsen (FJ) model (Noah 1999) or
the DeGroot model (Morris 1974), both of which mathematically model opin-
ion change as arising from a consideration of the average of neighbors’ opinions.
Beyond these, other models have also tried to look at opinion dynamics using
similar averaging mechanisms. Another example is the Hegselmann-Krause
(HK) model (Hegselmann and Krause 2002) that introduces bounded confidence,
where agents only average opinions within a certain distance of their own. Simi-
larly, the Lehrer-Wagner model (Lehrer and Wagner 1981) incorporates rational
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deliberation into the averaging process, providing insights into collective deci-
sion making. These models share a common underlying principle - description of
opinion evolution as an iterative averaging process.

However, inspired by Kearns’ experiments, we sought to model a scenario
where opinion dynamics and network relationships co-evolve. To do so, we pro-
pose a model of social preference formation that involves active sensing of a lim-
ited number of neighbor opinions. This approach shifts epistemic focus from opin-
ion dynamics already well-modeled by the FJ class of models to a more general
view of the formation of social preferences, particularly emphasizing how cognitive
mechanisms drive network evolution. Another key distinction between our model
and opinion averaging models previously seen in the literature lies in the treatment
of social influence. The FJ model, for instance, incorporates stubbornness, where
agents retain a fixed weight for their own opinions while averaging neighbors’ opin-
ions based on social influence (Noah 1999). In our model, stubbornness is replaced
by salience-weighted averaging, where the psychological relevance of interactions
plays a pivotal role. This salience is determined by factors like the similarity of
preferences, the strength of past interactions, and the decay of memory over time,
drawing from principles of human cognition and memory research (John 1991), rec-
ognizing that individuals do not merely conform to social norms but are actively
influenced by the perceived importance of specific social cues and experiences. By
incorporating psychological constructs, our model bridges the gap between socio-
logical and psychological approaches to network analysis. It thus offers a new per-
spective on how cognitive mechanisms such as inductive inference and memory
modulation shape social preferences and influence clique formation. This focus on
psychological salience and preference dynamics provides, as we see in our simula-
tions, new insights about the role of social preferences in the emergence of echo
chambers, as well as the role of high-degree nodes in the fate of consensus forma-
tion in self-selecting social networks.

A natural followup of this work could be to create networked game experiments
to test our model’s predictions about the interaction between network types and the
drive to consensus. The results of such experiment could possibly inform the fur-
ther development of computational models and our overall understanding of the role
of structural properties in clique forming behavior in social networks. If the impor-
tance of hubs can be shown to exist with human participants, one could then pos-
sibly probe deeper into hub dynamics and see how hubs interact with other nodes,
and how opinions spread across the network. This knowledge could then possibly
be used to drive more convergence and think of ways of translating this work into
actual human social networks. One big assumption in all of this, however, is that
agents (humans or otherwise) are open to changing their opinions based on the opin-
ions of their neighbors.

Our findings have theoretical as well as practical implications for enhancing
group efficiency and cohesion, particularly in addressing the challenges posed by
clique formation and balkanization. By understanding the mechanisms underly-
ing network dynamics and their impact on group behavior, it may be possible to
design social media platforms and online communities that foster a less balkanized
environment. In particular, our results show that it is not necessary to impose fixed
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networked structure to prevent balkanization. The presence of highly connected
nodes in networks also protects communities from failures in consensus, so long
as these nodes are open to changing their colors based on observing their local
neighborhood’s majority view. Interestingly, these results are consistent with recent
empirical work showing that the effect of filter bubbles in large-scale social media
may be overstated (Dahlgren 2021).
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