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Abstract

Stopping decisions are frequently modeled as decisions to
switch to alternative activities once the current activity stops
being adequately rewarding, such as in optimal foraging the-
ory, as well as more recent metacognitive models. However,
the sense of stopping and making decisions in such frame-
works is highly platonic, with both decisions and stopping ac-
tions occurring instantaneously. In contrast, the phenomenol-
ogy of quitting actions that one is undertaking appears to be
temporally extended and metacognitively challenging. We
study the metacognitive covariates of quitting decisions made
by chess players using a large database of chess games sourced
from an online chess portal. Our analysis reveals that players
tend to persevere when they are playing against stronger oppo-
nents and after having played poor moves. We also find that
a history of quitting games makes players more likely to quit
in future games, but that having recently quit in a game offers
some protective effect against quitting. Finally, we find that
quitting a game makes it more likely that a player will play
a game again soon. We place these results in the context of
modeling quitting as a metacognitive choice affected by mul-
tiple competing goals.

Keywords: decision-making; metacognition; optimal stop-
ping problem, quitting decisions; resilience

Introduction

Quitting an activity that one is actively pursuing represents a
phenomenologically distinct class of stopping decisions. In
formal decision-making models, quitting is synonymous to
stopping decisions, that are usually framed as deciding on
a stopping rule for information search that maximizes re-
ward and minimizes cost (G. J. Browne, Pitts, & Wetherbe,
2007; Branco, Sun, & Villas-Boas, 2012). It has long been
recognized that an optimal solution to this optimal stop-
ping problem (OSP) should strike a balance between these
two (Charnov, 1976; Green, 1984).

In optimal foraging theory, the fons et origo of the formal
study of stopping decisions, stopping decisions are framed as
a problem of persisting or giving up in a food-rich patch for
an animal. The decision to ’give up’ on a patch is dependent
on the rate of food consumption and the time spent searching
within the patch (Charnov, 1976). Optimal foraging predicts
that the animal should ’give up’ on a patch once the rate of
capturing food in a patch drops down to the average food cap-
ture rate within the area.

However, optimal foraging and its successor theoretical
frameworks remove the complexities of real-life decision
making by not incorporating the role of experience that can

lead to changes in decision thresholds. They also have low
generalizability to contexts beyond the specific task which
are used to generate static thresholds (Bugbee & Gonzalez,
2022).

A real-life example where these frameworks fail to predict
the optimal stopping rule is loss chasing in gamblers. Gam-
blers tend to recover their losses by placing bets of increas-
ing sizes with the expectation that they will probably win
this hand. Loss chasing is considered maladaptive because
gamblers tend to underestimate their previous loss experi-
ence when deciding on a strategy to pursue high-risk rewards
(Campbell-Meiklejohn, Woolrich, Passingham, & Rogers,
2008).

Optimal stopping and foraging theories do not account for
the loss-chasing nature of gambling behavior. Both these
models would predict that given a consistent losing streak,
a gambler should set their stopping thresholds at a boundary
where their reward rate would fall below expected future re-
ward (Guan, Lee, & Vandekerckhove, 2015). Since gamblers
do loss-chase, both these models would fall short of explain-
ing this behavior unless additional parameters are introduced.

In other domains of life, individuals struggle with the prob-
lem of persevering in unfavorable tasks compared to favor-
able tasks. Research on strategy selection (Lieder & Grif-
fiths, 2017; Lieder, Krueger, & Griffiths, 2017) has provided
a different solution from classical stopping models. Inspired
from bounded rationality, this research argues that humans
select strategies that balance the cost of computation with the
current availability of cognitive resources. This selection pro-
cess is termed as meta-reasoning, that is, assessing how good
or bad a particular strategy is. Meta-reasoning about when
to stop would require deliberating over the optimal stopping
strategy that balances the deliberation time with existing re-
sources.

Returning to the example of loss-chasing gamblers, utili-
tarian meta-reasoning would predict that gamblers choose to
continue gambling after a string of losses as this strategy still
allows them to recover some portion of their losses ("high-
risk, high-reward’) given the reduced cognitive resources un-
der which they would be operating. Qualitative evidence of
loss chasing has shown how gamblers mention the hope of
‘hitting the jackpot’ on their next bet, even in the face of
imminent doom of financial liabilities associated with their
losses (B. R. Browne, 1989; Campbell-Meiklejohn et al.,



2008).

The meta-reasoning approach highlights the possible role
that metacognition would play in stopping decisions. It
moves beyond the threshold and reward-centric criteria that
optimal stopping and foraging theories rely on by shifting the
focus to psychological factors. But how can metacognition
be implicated in contexts where individuals persistently per-
severe or prematurely stop an activity?

Quitting as a special form of stopping

Unlike simple decisions to stop an activity, for example to
stop reading a book in order to eat dinner, quitting an activ-
ity, for example to stop playing a video game when things are
not going well, appears to be a phenomenologically distinct
category of decision, implicating a tussle between the choice
to quit or not to quit before the decision is ultimately made.
Typically, there is a normative expectation to ‘not quit’ that
makes quitting decisions cognitively and emotionally chal-
lenging for people (Duke, 2022).

In this paper, we attempt to characterize the metacognitive
characteristics of quitting decisions. Existing metacognitive
research on stopping decisions has focused on laboratory-
based stopping problems, which tend to occur on short
timescales and are concerned with immediate rewards that
are incurred on stopping at a particular point in the sequence
(e.g. choosing a maximum out of a number sequence; (Guan,
Lee, & Silva, 2014)). However, quitting is a characteristic of
decisions made on larger timescales than are easily accessi-
ble in lab experiments, and thus a study of the properties of
quitting is poorly matched with experimental methods. In-
stead, we rely on correlative analysis of a naturalistic domain
with an intrinsic affordance for decision-makers to quit in re-
peated episodes of the same activity, rendering their behavior
amenable to empirical analysis (Kuperwajs & Ma, 2022). In
particular, we study the metacognitive aspects that go into
chess players’ decisions to resign while playing chess games
online.

Chess has been popularly studied within the domains of
decision making and complex planning (Charness, 1977;
De Groot, 1978) by providing natural control over when a
person decides to start or stop a particular game (Chowdhary,
lacopini, & Battiston, 2023; Russek, Acosta-Kane, van
Opheusden, Mattar, & Griffiths, 2022). Using chess as
our primary modus operandi for studying quitting, we fo-
cus on large-scale datasets as a testing ground to capture
the importance of decision-making on human performance.
Player quality can be easily characterized through player rat-
ings defined by a standardized rating system (Glicko-2 rat-
ing, (Glickman, 2012)). Furthermore, the result of each de-
cision can be estimated using approximate chess algorithms
and compared to the actual outcome of the game (Sigman,
Etchemendy, Slezak, & Cecchi, 2010).

We define ‘quitting’ in chess as the event of a player resign-
ing a game without being already forced in a state of check-
mate. Using this definition, we focus our efforts on mapping
the game-related factors that affect when a player resigns. We

assume that this action is preceded by a decision to quit the
match involving latent metacognitive capabilities within the
individual. Based on this formalization, we examine how
chess players make decisions about when to quit a match. It
is reasonable to expect that decisions of quitting would rep-
resent significant mental conflict for the player, as resigning
from a match incurs a cost on a player’s skill ratings.

Methods
Measure of quitting

In order to model how sequential decisions progress to-
wards a decision to quit, survival analysis provides a conve-
nient framework. We operationalise two interrelated concepts
(Kleinbaum & Klein, 1996) for our analysis:

1. Survival rate: The time marker until which a subject has
survived. In our dataset, this is defined by the number of
moves made within the game before the game ends.

2. Hazard rate (or quit rate): The probability of the event

of interest happening at the next time marker, given that the
subject has survived until this time marker. In our dataset,
this is calculated using a combination of resign tags and
last move number for all games for each player.

The quit rate (or hazard) represents a psychological vari-
able that acts as an indicator of a player’s propensity to quit a
chess match. In survival analysis terms, quit rate is calculated
as probability of the event-of-interest (i.e. quit) taking place
at the next move given that a player have survived until the
current move.

Data Collection

We extracted approximately one million online chess games
belonging to the Classical game category for the year 2020
from the chess server lichess.org. Within this category, each
player is allotted min. 30 minutes as their move times, giving
them ample time to plan and make their moves. The play-
ers were randomly sampled (N;y;; = 13,000) from the data
set and the matches were fed into a chess evaluation engine
(Stockfish v10). The engine performs a move-by-move anal-
ysis for each game and assigns a numerical value for each
move, signifying its advantage w.r.t. to the player. The out-
come of the game as a result of checkmate is also generated
by the engine. Only games ending in a win/loss through a
checkmate or resign by a player are retained. Resign games
are then classified for each player’s game roster. Games
where the last move is not a checkmate and the game result
indicates an opponent win are classified as resign games for
the player. Using this criterion, we retained players (Nyesign
= 250) who had at least one game resign on their roster. All
retained players had min. 5 games in their roster, in order to
bring statistical reliability to our models.

Dataset

Figure 1a illustrates a typical resignation scenario, where the
player (playing as white) is in a hopeless losing situation with
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Figure 1: Summary of dataset characteristics. Panel (a) shows an example resignation scenario with respect to a white player.
Panel (b) shows histograms for ELO ratings for both players and their corresponding differences. The close match indicates the
ELO-matching algorithm at play in online chess queues. Panel (c) shows the distribution of game lengths for all games, in ply
numbers. Panel (d) shows Stockfish evaluations for 50 games of a player. Resigned games are indicated by yellow crosses.

no chance of recovery. In our data set, the skill levels of both
players were on average closely matched, as reflected in their
ELO ratings, and the resulting differences clustered around
zero (Figure 1b). The large sample of games offered a diverse
range of game lengths, with a wide variety of scenarios (Fig-
ure 1c). We consider the complete roster of games for each
player to account for the variability of decision-making be-
tween players, to capture their quitting behavior (Figure 1d).

Results

In this setup, we empirically investigated how decisions to
quit are affected by game factors and past experiences. We
asked two questions in our analysis: (1) How do game fac-
tors, such as skill gaps between players and the quality of the
board state, affect a player’s decision to quit? and (2) Do
players rely on their past experience of quitting in order to
make quitting decisions?

We formulated a mixed-effects hazard regression model
with game factors as fixed effects and player ID as random

effects. The model captures how quit rate (i.e. the hazard
rate) varies with different game factors. We included player-
level game factors for the evaluation of the last move, player
ELO and difference in ELO between the player and opponent,
distance from the last quit match to the current match, and the
number of matches that have been stopped. All these factors
were indexed at the player and game level (Table 1). For the
random intercept, estimated pseudo-variance was 0.086, indi-
cating low heterogeneity in baseline hazard between players.

Game factors affect quitting decisions

Previous research has quantified human chess performance
in terms of two factors in the game: the variety of open-
ing sequences and the win rate within different skill groups
(Steyvers & Benjamin, 2019; Chowdhary et al., 2023;
De Marzo & Servedio, 2023). It is intuitive to expect the win
rate to scale up with increasing skill. Would a similar relation
hold with a player’s quit rate?

We asked this question with reference to two key game fac-



Table 1: Mixed-effects Cox regression model with fixed effect for game factors and past quitting and random effect and intercept
for player ID. Hazard Rate is measured as the hazard of quitting a match. Game and past quitting factors are z-score normalized.

Covariate exp(B) 95% CI  p-value
Evaluation(last move) 0.94 0.93,0.95 <0.001
Player ELO 0.98 0.94,1.02 0.3
ELO difference 0.72 0.70,0.73  <0.001
Last Quit 0.87 0.82,0.92 <0.001
Total Quits 1.09 1.02,1.16  0.007
Evaluation x ELO Difference 0.97 0.96,0.99 0.002
Player ELO x ELO Difference 0.94 0.92,0.96 <0.001
Last Quit x Total Quits 0.93 0.88,0.99 0.021
ELO Difference x Last Quit 0.99 0.97,1.01 0.3
Evaluation(last move) x Last Quit x Total Quits 1.03 1.01,1.04 <0.001

tors: evaluation of the last move in the game and the skill
difference between a player and their opponent. The last
move’s evaluation provided by Stockfish is assumed to rep-
resent the “ground truth’ of the board state that a player may
approximate and evaluate in their decision-making process
(Holdaway & Vul, 2021). For quantifying skill level, we take
skill difference as the metric instead of the absolute ELO val-
ues for the player, as we believe that the difference represents
a normalized metric for a player to judge their confidence of
winning/losing in a match.

Table 1 shows the results of a mixed-effects Cox regres-
sion model with *player ID’ as random intercepts and adjust-
ment for game factors and previous quitting experience. The
results indicated that the difference in ELO (exp(B) = 0.72,
95%CI: 0.70-0.73, p < 0.001) and the evaluation of the last
move (exp(B) = 0.94, 95%CI: 0.93-0.95, p < 0.001) pre-
dicted a 28% and 6% decrease in the risk of quitting a match.
This indicates that a player’s decision to quit is influenced
by different game factors somewhat counterintuitively: play-
ing against a significantly superior player strongly predis-
poses players to persist and having made a significantly poor
move produces a directionally similar but weaker effect. In-
terestingly, the interaction between last move and ELO differ-
ence (exp(B) = 0.97, 95%CI: 0.96-0.99, p < 0.002) predicts
a 3% decrease in the risk of quitting. The effect of the dif-
ference in ELO persists even after adjusting for player skill
(exp(B) =0.94, 95% CI: 0.92-0.96, p < 0.001) through a 6%
decrease in the hazard of quitting. The latter interaction could
also be due to covariance between a player’s ratings and the
difference with regard to the opponent, which is factored into
the Glicko-2 rating scheme.

Quitting often makes quitting more likely

In order to check if past experiences of quitting affect the
player’s current quitting decision, we defined two novel vari-
ables: “Last Quit” defines how far in time the current match
is from the most recently quit match. “Total Quits” refers to
the total matches the player has quit until the current match.

The Last Quit factor (exp(B) = 0.87, 95%CTI: 0.82-0.92, p <
0.001) predicted a 13% decrease in the hazard of quitting,
suggesting that the experience of having recently quit makes
quitting in the current game less likely, keeping other factors
constant. In contrast, Total Quits (exp(B) = 1.09, 95%CL:
1.02-1.16, p = 0.007)) predicted a 9% increase in the haz-
ard of quitting. This effect reverses after adjusting for the
interaction with Last Quit (exp(p) = 0.93, 95%CI: 0.88-0.99,
p =0.021)), predicting a 7% decrease, although the statistical
significance of this interaction does not survive corrections
for multiple comparisons at p = 0.05.

The quality of the board state interacts with the past quits
in time and frequency (exp(P) = 1.03, 95%CI: 1.01-1.04,
p < 0.001)), increasing the hazard of quitting by 3%. This
indicates a complex interaction between current board qual-
ity and previous quitting experiences on the decision to quit,
likely driven by greater player experience.

Tilting towards a decision to quit

The complex nature of the relationship between game factors
and past quitting experiences toward predicting the probabil-
ity of quitting should also translate into subsequent behavior.
A pervasive aspect of playing games has been the influence
of negative game performance on decision making (Schiill,
2016) and the emotions of the player. This tilting behavior
has been documented in poker players engaged in loss chas-
ing (B. R. Browne, 1989) and also in esports players (Wu,
Lee, & Steinkuehler, 2021). A behavioral consequence of
quitting decisions could be how fast a player starts the next
match after having quit relative to a match where they have
not made this decision. Players may ’tilt’ towards quickly
starting the next match after a quit in order to recover the loss
and embarrassment of resigning. So, we were interested in
checking if the player’s time to the next game is affected by
these quitting decisions and game factors.

We measured the hunt for new games as the absolute de-
viation in time between a new game and resign game. We
normalized it with respect to the average deviation in time to



play the next game for each player. This indicates how much
the time to the next game (after a resign) deviates from the
mean time for each player.

Table 2: Mixed-effects linear model for the time to play the
next game. Differences in ELO ratings and time since last
quit are included as fixed-effects with player ID for random
intercepts.

Coef. B Std. Error  95% CI p-value
Intercept 18.976  1.353 16.224,21.529  <0.0001
ELO difference  0.257 0.138 -0.013,0.528 0.062
Last Quit 0.267 0.124 0.025,0.509 0.030

We formalized a mixed-effects linear regression model of
the form: Time to next game ~ ELO difference + Last Quit +
1|player. The model follows a random-effects structure with
time to the next game as the dependent variable. The dif-
ference in ELO and the time since the last quit are included
as predictors in the model. These predictors were z-score
normalized for the analysis. The player ID represents the
random-effects variable in the model.

Table 2 shows the results of the mixed effects model. The
main effect of time since the last quit (f = 0.267,SE =
0.124, p = 0.030) predicted the time to play the next game.
If a player had a recent quit, they are more likely to play the
next game instead of waiting. This demonstrates a ’tilting’
behavior for the player. However, no main effect of the ELO
difference was observed (p = 0.062). Skill differences have
no influence on when the player starts their next match, but
their past decisions about quitting do. This indicates a mis-
match between the decision making during a match and its
downstream consequences on future play when a player de-
cides to quit.

For this mixed linear model, following Nakagawa and
Schielzeth (2013), the marginal R2 was 0.05, indicating that
fixed effects explained 5% of the variance in deviation in time
to next game after a resign. The conditional R? was 0.56, indi-
cating that 56% of the variance was explained when account-
ing for both fixed and random effects. Both homoscedasticity
and normality assumptions were violated in our data. Possi-
ble reasons could be the unequal sizes of data available for
each player, which would affect the variance of error residu-
als for the random-effects component of the model. Despite
these violations, model estimates can be interpreted as robust
with minimal consequences (Schielzeth et al., 2020).

Discussion

Deciding to quit a particular activity is dependent on both
task-specific and task-invariant psychological factors. Previ-
ous research has focused extensively on understanding when
people stop seeking information to make a decision to quit or
persist (Guan et al., 2014; Kuperwajs & Ma, 2022; Sukhov,
Dubey, Duke, & Griffiths, 2023). However, due to the ab-
stract nature of stopping decisions in laboratory tasks, the

metacognitive covariates involved are poorly understood. In
this paper, we sought to identify metacognitive covariates for
a real-world quitting decision, when to quit a game of chess,
with the help of a large-scale database of online chess.

We found that larger skill differences between a player and
their opponent seem to push them to persevere in the match.
Holdaway and Vul (2021) obtained a similar relation with risk
preferences in players. They showed that players may pre-
fer to play riskier moves against opponents with greater skill.
They postulated that this could be a strategy used by play-
ers to outsmart the opponent, especially in losing situations.
This is further solidified by a game board state that is dis-
advantageous to the player, as shown in our analysis. Thus,
players are, somewhat counterintuitively, less likely to quit in
adverse game situations, and when paired against a stronger
opponent. The simplest explanation for this pattern of be-
havior is that players expect to be doing poorly when playing
against stronger opponents and thus are less conflicted meta-
cognitively about the choice to continue playing.

We also find evidence of behavior consistent with a sense
of guilt over violation of normative expectations, with players
less likely to quit a game if they have recently quit a game, but
more likely to quit a game if they have a history of quitting
games (and thus habituated to norm violation). Loss chase,
that is, being impelled to play again sooner after having quit
in a game, is also consistent with this sense.

Metacognitive failure of will

A complete account of metacognition requires that both the
monitoring and control processes work together. Our results
indicate a deficit in the control process. The players moni-
tor the current state of the game, the difference in skill, and
the history of quitting. But when they have to implement this
rational choice into action, they seem to fail. This is illus-
trated by the time it takes for them to start their next match.
If they were aware of their history of quitting, they would
act in a way that prevents more losses to their ELO ratings.
Pursuing a win during a cold streak would be more difficult
to achieve compared to a hot streak. Although players do
encounter longer durations of cold streaks compared to hot
streaks (Chowdhary et al., 2023), it seems almost irrational
that a player should continue onward to their next game right
after a match quit. This discrepancy is highlighted by our
analysis and could possibly hint at the lack of metacognitive
control in such instances. According to at least one classic
theory of metacognition (Nelson, 1990), metacognitive con-
trol involves planning w.r.t. retrieval of relevant past experi-
ence on judgments about task performance. Based on our re-
sults of tilting in chess games, we postulate the cause of this
experience as a metacognitive failure that affects willpower.
How would we begin to model this breakdown of the will?
Figure 2 illustrates a network model of willpower. Each
node j represents a quanta of willpower capacity measured
as W; = (14 «)L; (Figure 2a). This willpower capacity is
proportional to the load carried by the node, defined by its
degree of connection to neighbor nodes. Thus, each node is
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supported by its neighbor in keeping the network connected.

The distinct phenomenology of quitting decisions is influ-
enced by the intrusive thoughts of quitting that spontaneously
appear in a person’s awareness. A single onset of a quitting
thought can initiate an autocatalytic effect on the breakdown
of a person’s will to persist on the task. Figure 2b illustrates
the cascading effect of a single quitting thought. Failure of a
random node can initiate downstream consequences of a net-
work collapse, over time. This type of cascade failure would
result in a rapid breakdown of network integrity (Motter &
Lai, 2002).

What protects against the tyranny of these quitting
thoughts? Resilience, the ability to respond to a task af-
ter failure (Werner, 1989), has been widely cited as a trait
that individuals possess in adverse situations. These indi-
viduals tend to show persistent behaviors on tasks where
the cost of persisting tends to be greater than its benefit.
Would resilience protect the individual against weathering
the quitting storm? Figure 2c describes an example case of
survival against cascade failure of willpower for individu-
als with different levels of resilience, operationalized as the

variable o.. This “battle of wills” can be modulated by op-
timal metacognitive control, which could explain the varia-
tions in levels of resilience demonstrated by an individual in
different contexts (Matthews, Panganiban, Wells, Wohleber,
& Reinerman-Jones, 2019).

Thus, rather than attribute willpower as a trait (Ainslie,
2021), as is conventional, we propose that it may be insight-
ful to study it as an outcome of metacognitive control. Fu-
ture work can characterize how components of this network
model could operationalize psychological factors that affect
quitting decisions in task contexts. The prediction of the net-
work model of an autocatalytic pattern for quitting thoughts
can also be studied in additional ecologically rich domains
(Hutchins, 1995). We expect that further pushing the en-
velope of ecological embeddedness to study metacognitive
behavior, as demonstrated in this work, will yield decision-
making models with greater phenomenological validity.

References

Ainslie, G. (2021). Willpower with and without effort. Be-
havioral and Brain Sciences, 44, €30.



Branco, F., Sun, M., & Villas-Boas, J. M. (2012).
Optimal search for product information. Manage-
ment Science, 58(11), 2037-2056. Retrieved from
https://doi.org/10.1287/mnsc.1120.1534

Browne, B. R. (1989). Going on tilt: Frequent poker players
and control. Journal of gambling behavior, 5(1), 3-21.

Browne, G. J., Pitts, M. G., & Wetherbe, J. C. (2007). Cog-
nitive stopping rules for terminating information search in
online tasks. MIS Quarterly, 31(1), 89—104. Retrieved
from https://www.jstor.org/stable/25148782

Bugbee, E., & Gonzalez, C. (2022). Deciding when to stop:
Cognitive models of sequential decisions in optimal stop-
ping tasks. In preparation.

Campbell-Meiklejohn, D. K., Woolrich, M. W., Passingham,
R. E., & Rogers, R. D. (2008). Knowing when to stop: the
brain mechanisms of chasing losses. Biological psychiatry,
63(3), 293-300.

Charness, N. (1977). Human chess skill. Chess skill in man
and machine, 34-53.

Charnov, E. L. (1976). Optimal foraging, the marginal value
theorem. Theoretical population biology, 9(2), 129-136.
Chowdhary, S., Iacopini, 1., & Battiston, F. (2023). Quantify-
ing human performance in chess. Scientific Reports, 13(1),

2113.

De Groot, A. D. (1978). Thought and choice in chess (Vol. 4).
Walter de Gruyter.

De Marzo, G., & Servedio, V. D. (2023). Quantifying the
complexity and similarity of chess openings using online
chess community data. Scientific Reports, 13(1), 5327.

Duke, A. (2022). Quit: The power of knowing when to walk
away. Penguin.

Glickman, M. E. (2012). Example of the glicko-2 system.
Boston University, 28.

Green, R. F. (1984). Stopping rules for optimal foragers.
The American Naturalist, 123(1), 30-43. Retrieved from
https://www.jstor.org/stable/2461356

Guan, M., Lee, M., & Silva, A. (2014). Threshold models
of human decision making on optimal stopping problems
in different environments. In Proceedings of the annual
meeting of the cognitive science society (Vol. 36).

Guan, M., Lee, M. D., & Vandekerckhove, J. (2015). A hier-
archical cognitive threshold model of human decision mak-
ing on different length optimal stopping problems. Pro-
ceedings of the 37th Annual Conference of the Cognitive
Science Society, 824-829.

Holdaway, C., & Vul, E. (2021). Risk-taking in adversarial
games: What can 1 billion online chess games tell us? In
Proceedings of the annual meeting of the cognitive science
society (Vol. 43).

Hutchins, E. (1995). Cognition in the wild. MIT press.

Kleinbaum, D. G., & Klein, M. (1996). Survival analysis a
self-learning text. Springer.

Kuperwajs, 1., & Ma, W. J. (2022). A joint analysis of
dropout and learning functions in human decision-making

with massive online data. In Proceedings of the annual
meeting of the cognitive science society (Vol. 44).

Lieder, F., & Griffiths, T. L. (2017). Strategy selection as ra-
tional metareasoning. Psychological review, 124(6), 762.
Lieder, F., Krueger, P. M., & Griffiths, T. (2017). An auto-
matic method for discovering rational heuristics for risky

choice. In Cogsci.

Matthews, G., Panganiban, A. R., Wells, A., Wohleber, R. W.,
& Reinerman-Jones, L. E. (2019). Metacognition, hardi-
ness, and grit as resilience factors in unmanned aerial sys-
tems (uas) operations: a simulation study. Frontiers in psy-
chology, 10, 640.

Motter, A. E., & Lai, Y.-C. (2002). Cascade-based attacks on
complex networks. Physical Review E, 66(6), 065102.

Nakagawa, S., & Schielzeth, H. (2013). A general and sim-
ple method for obtaining r2 from generalized linear mixed-
effects models. Methods in ecology and evolution, 4(2),
133-142.

Nelson, T. O. (1990). Metamemory: A theoretical framework
and new findings. In Psychology of learning and motivation
(Vol. 26, pp. 125-173). Elsevier.

Russek, E., Acosta-Kane, D., van Opheusden, B., Mattar,
M. G., & Griffiths, T. (2022). Time spent thinking in online
chess reflects the value of computation.

Schielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat,
D. E., Allegue, H., Teplitsky, C., ... Araya-Ajoy, Y. G.
(2020). Robustness of linear mixed-effects models to vi-
olations of distributional assumptions. Methods in Ecol-
ogy and Evolution, 11(9), 1141-1152. doi: 10.1111/2041-
210X.13434

Schiill, N. D. (2016). Abiding chance: Online poker and
the software of self-discipline. Public Culture, 28(3), 563—
592.

Sigman, M., Etchemendy, P., Slezak, D. F., & Cecchi, G. A.
(2010). Response time distributions in rapid chess: a large-
scale decision making experiment. Frontiers in Decision
Neuroscience, 4, 60.

Steyvers, M., & Benjamin, A. S. (2019). The joint contribu-
tion of participation and performance to learning functions:
Exploring the effects of age in large-scale data sets. Behav-
ior research methods, 51, 1531-1543.

Sukhov, N., Dubey, R., Duke, A., & Griffiths, T. (2023).
When to keep trying and when to let go: Benchmarking
optimal quitting. PsyArXiv.

Werner, E. E. (1989). Vulnerability and resiliency: A longi-
tudinal perspective. Children at risk: Assessment, longitu-
dinal research, and intervention, 158—172.

Wu, M., Lee, J. S., & Steinkuehler, C. (2021). Understanding
Tilt in Esports: A Study on Young League of Legends
Players. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems (pp. 1-9).
Yokohama Japan: ACM. Retrieved 2025-01-30, from
https://dl.acm.org/doi/10.1145/3411764.3445143
doi: 10.1145/3411764.3445143



