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Abstract
In EEG and fMRI analysis, researchers choose from a combinatorially large set of theoretically indistinguishable options
while building a data processing pipeline based on individual beliefs and other factors. However, not all pipelines are reli-
able, although the same might not be evident while performing the analysis. Thus, re-analyzing the data through various
alternate pipeline configurations presents an opportunity to determine the reliability of the reported results. Results that are
replicated across a larger number of pipeline specifications may be considered reliable. In this paper, we adapt a technique
recently developed in the psychology literature, specification curve analysis (SCA), to quantitatively assess the robustness
of noninvasive neuromodeling results drawn from fMRI and EEG data. Our empirical results, based on a reanalysis of the
THINGS dataset, show that the conclusions drawn from EEG-based RSA are fairly robust to alternative specifications, but
not fMRI-based RSA. We present a decision tree-based approach to identifying the most robust specification given a set of
alternative specifications and dataset for any analysis. However, even the most robust set of specifications for fMRI-based
analysis still yield fairly epistemically fragile conclusions. We conclude, based on these results, that SCA could and should
be applied without loss of generality to nearly all event-related fMRI data analysis protocols, with suitable modifications to
the set of alternative specifications we used in our work.

Keywords Specification curve analysis · fMRI analysis · Representational similarity analysis · Deep neural network

Introduction

In computational neuromodeling, pipeline configurations
constitute an extremely selective set of analytical choices
and, as a result, rarely map bijectively to underlying assump-
tions. For the same neural computationalmodel assumptions,
there exist multiple combinations of valid parameter choices
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for the encoding and decoding of the model estimation
pipelines. The chances of introducing confounding results
in certain combinations threaten the reliability of the model
estimates and the downstream analysis (Kelly Jr &Hoptman,
2022). Evaluating the consistency of estimates across specifi-
cations is necessary for inferences resulting from processing
pipelines with high degrees of freedom.

For example, multivariate encoding and decoding anal-
yses in fMRI and EEG, respectively, work under a similar
hypothesis of linearized feature space to transform feature
representations from the feature space to the activity space,
which forms the basis for the development of linear encod-
ing and decoding models (Naselaris et al., 2011). Usually,
multiple combinations of specifications are supported by the
same assumptions as true computational models. Likewise,
pipeline specifications span from this singular latent assump-
tion tomultidimensional parameter space for bothmodalities,
andmore so for fMRI pipelines. For example, to estimate fea-
ture vectors based on linear encoding models (Naselaris et
al., 2011) fromBOLD fMRI, the estimation of the best-fitting
canonical hemodynamic response function can be performed
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in a multitude of ways (Pedregosa et al., 2015). Moreover,
estimation strategies for the same, such as voxel-wise best-
fitting HRF, often introduce confounds due to idiosyncratic
noise embedded in the signal in individual voxels.

In contrast, the alternative choice of estimating HRFs for
regions of interest (ROI) results in more unbiased estimates.
Generally, such analysis forks are present in processing
pipelines in neuromodeling analyses at each parameter
choice. For a limited sample size in modalities like fMRI
(Turner et al., 2018), these potential biases amplify the con-
cerns of Type-1 and Type-II errors. Inferences based on a
specific pipeline configuration might not generalize across
populations or, worse, across alternate pipeline configura-
tions.

In contrast, EEG offers a unique set of challenges and
opportunities when it comes to decoding neural activity.
Unlike fMRI, it offers high temporal resolution and direct
measurement of population-level neural activity (Cohen,
2017), aiding in a detailed examination of the temporal
aspects of representational dynamics. Its constraints, such
as spatial resolution and signal-to-noise ratio, are offset
by its temporal precision, crucial for effective decoding
analysis. However, EEG analysis is complicated by factors
such as its inherent non-linearity and non-stationary proper-
ties (Gramfort et al., 2013; Cole & Voytek, 2019), as well as
interindividual variability (Clerc et al., 2016), all of which
can significantly affect the analysis and decoding perfor-
mance.

In a similar vein, decoding models are often limited to
classifying betweenonly a fewdata conditions, using training
sequences derived from the same conditions (Haynes&Rees,
2006). The limited scope of these models thus affects their
ability to generalize, as they often struggle to adapt to a wide
variety of brain states, leading to a propensity for classifier
overfitting. Multivariate EEG decoding analysis often uses
classifiers that allow them to detect subtle patterns missed
in average signal comparisons, typically used in univariate
methods (Grootswagers et al., 2017); however, classifiers
are sensitive and require caution when interpreting decod-
ing results (Pereira et al., 2009); checks must be in place to
ensure that classifiers learn categorical distinctions that help
them generalize, rather than learning specific exemplar fea-
tures (Carlson et al., 2013). However, the decoding pipelines
used in most EEG studies are rarely tested for robustness,
similar to the practices of fMRI studies, and therefore should
also be subjected to testing for alternative specifications.

These concerns about robustness converge, by design, on
representational similarity analysis (RSA), a recent adapta-
tion of classical MVPA, which facilitates the comparison
of representational dynamics between modalities, primarily
between brain activity, behavioral response, and computa-
tional models (Kriegeskorte et al., 2008). In the last decade,

there has been an efflorescence of studies using RSA to test
strong and, at times, ambitious hypotheses. Representations
under RSA are built at a higher level of description (Shea,
2018) with strong assumptions, viz, that brain or behavioral
activity seen in an experimental condition can be directly
treated as a stimulus-condition representation. Comparison
of representational geometry is reduced to a correlation of
response vector distances across the stimulus conditions in
the respective modalities, encapsulated as entries in repre-
sentational dissimilarity matrices (RDMs).

However, the data entering RSA are fraught with the
same perils as any other neuromodeling pipeline, offering
the researcher a plethora of alternatives for various analyt-
ical choices—from HRF estimation, choice of brain voxels
for regions of interest, and a few added dimension for the
RSA specific computations such as distancemeasure to com-
parison metrics. With the massive number of computations
necessary for computing anRDM, the potential noise sources
in estimations are a pressing concernfirst for theRDMs them-
selves and secondly for any downstream comparisons using
them. Similar concerns have previously been raised (Ritchie
et al., 2021),with suggestions for repeating the analyses using
alternate pipeline configurations to evaluate the reliability of
the estimates resulting from an RSA pipeline, specifically
for a modality such as fMRI with a low signal-to-noise ratio
(SNR).

In this paper, we adapt a technique recently developed
in the psychology literature, specification curve analysis
(SCA) (Simonsohn et al., 2020), to quantitatively assess
the robustness of non-invasive neuromodeling results drawn
from fMRI and EEG data. SCA is built upon a simple
principle—researchers choose from a combinatorially large
set of theoretically indistinguishable optionswhile construct-
ing a data processing pipeline based on individual beliefs and
other factors.However, not all pipelines are reliable, although
the same might not be evident while performing the anal-
ysis. Thus, re-analyzing the data through various alternate
pipeline configurations presents an opportunity to determine
the reliability of the reported results. Results that are repli-
cated across a larger number of pipeline specifications may
be considered reliable. SCA allows one to redo the analy-
sis in these specifications, the original pipeline configuration
being one of them, and report whether the result continues
to be statistically significant in the most reasonable specifi-
cations of the analysis chain or whether a very specific set of
choices leads to a statistically significant result, while most
others do not (Simonsohn et al., 2020).

We additionally estimated the robustness of model-based
hypothesis testing based on fMRI data using a similar SCA
approach and present an algorithm for finding themost robust
specification for an analysis pipeline, given a set of alternative
specifications and a dataset.
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Methods

Dataset

To estimate the reliability of the RSA based on task-based
fMRI and EEG signals, we chose datasets that included mul-
tiple sessions for the same visual stimulus categories. First,
for fMRI signals with low signal-to-noise ratio (SNR), the
multi-session response for stimulus categories is essential
for inference sensitive to the response characteristics of the
categories, with the high degree of noise in event-related
and sparse block-based designs. Secondly, training classi-
fiers to perform decoding analysis in EEG requires a dataset
with multiple observations for individual object categories.
In addition to the dense individual sampling (Turner et al.,
2018), evaluating the reliability using a dataset encompassing
a diverse set of stimulus categories also ensures the general-
izability of the inferences from SCA to broader domains of
studies. To this end, our initial analyses for fMRI and EEG
usedTHINGS (Hebart et al., 2023;Grootswagers et al., 2022)
datasets of the respective modalities curated specifically for
representational similarity analysis with the design structure
desired for our analysis. For the subsequent fMRI analysis to
assess the reliability ofmodel hypotheses usingRSA,we per-
formed that analysis using a dataset with fewer categories but
denser sampling per individual, i.e., more sessions for each
image category. In addition, we chose a dataset that has pre-
viously been tested for similar model hypotheses. For this
purpose, we used this dataset (Horikawa & Kamitani, 2017)
that has been previously tested (Choksi et al., 2022) formodel
hypotheses.

fMRI Data

For our primary assessment of the reliability of RSA, we
used this dataset (Hebart et al., 2023). THINGS fMRI dataset
consisted of data from three subjects. For each subject, 12
sessions of the BOLD response of a diverse set of 720 rep-
resentative object categories with a different exemplar from
each categorywere recorded in the sessions. In addition to the
category responses, the dataset included 100 test images and
unique synthetically generated catch images in all sessions.
For our analysis, we only used the functional data recorded
in response to the category exemplars of 720 diverse object
concepts. Functionalmagnetic resonance datawere collected
using three Tesla Siemens Magnetom Prisma scanners with
a 32-channel head coil. The fMRI task, functional brainMRI
data was recorded with isotropic resolution of 2mm (60 axial
slices, 2mm slice thickness, no slice gap, matrix size 96×96,
FOV = 192×192mm, TR = 1.5 s, TE = 33 ms, flip angle =
75◦, echo spacing 0.55ms, bandwidth 2,264Hz / pixel,multi-
band slice acceleration factor 3, phase encoding posterior to
anterior) (for further methodological details, see Hebart et

al. (2023)). The stimulus was presented in an event-related
design for 500 ms, followed by a fixation of 4 s. In addition
to the functional data, six categories of selective functional
runs for faces, body parts, scenes, words, and objects were
recorded for each subject.We used category localization runs
to estimate regionmasks. For our analysis,we focussedon the
extrastriate body area (EBA), the parahippocampal place area
(PPA), the fusiform face area (FFA), and the lateral occipital
complex (LOC). For each region, we estimate themask using
the categories-selective runs and the region atlas (Julian et
al., 2012). Since the RDM estimates for individuals are inde-
pendent of other subjects, for computational tractability, we
performed the analysis on a randomly selected subject from
the pool of three subjects.

To test the robustness of the model hypotheses in response
to analytical flexibility, we used (Horikawa & Kamitani,
2017) composed of recordings in response to a subset of
ImageNet image categories. The dataset included a BOLD
response of 1200 training images for five subjects. In addi-
tion, functional data were recorded in response to 50 test
images in 35 sessions for each individual. Given that the
objective of our analysis was to estimate the interaction
between the analysis decision and the significance of the
hypothesis, the average response to the repeated presentation
of 50 test images provided the optimal basis for the creation
of RDM to decrease the effect of noise at an intra-subject
level. Functional fMRI data were collected using a 3.0-Tesla
Siemens MAGNETOM Trio A Tim scanner located in the
ATR Brain Activity Imaging Center with no cut gap, matrix
size 64x64, slice thickness 3mm, FOV = 192x192mm, TR =
3ms, TE = 30ms, flip angle = 80◦ (for further methodological
details, see Horikawa and Kamitani, 2017).

EEG Data

For EEG, we used the THINGS-EEG dataset (Grootswa-
gers et al., 2022) for our RSA reliability assessment. The
data used were from five subjects randomly pooled from
a sample size of 50 subjects. The stimuli shown during
the experiment were from the THINGS database (Hebart
et al., 2019). The analysis used data from the 200 valida-
tion images, which were shown in random order using a
rapid serial visual presentation (RSVP) paradigm, repeated
in 12 sequences. Continuous data were recorded using
a 64-electrode BrainVision ActiChamp system, arranged
according to the international 10-10 system standard for elec-
trode placement. The digitization of the signal occurred at a
resolution of 0.0488281 microvolts, with a sampling rate of
1000 Hz, and the electrodes were referenced online to Cz.
Each image was presented for 50 ms, followed by a blank
screen lasting another 50ms. The same 200 imageswere con-
sistently shown to all subjects, as the uniformity of the stimuli

123



Computational Brain & Behavior

between participants is essential for accurately assessing the
reliability of the underlying representational dynamics.

Preprocessing

fMRI

The functional magnetic resonance imaging data was pre-
processed by performing slice timing correction, rigid head
motion correction, field map-based susceptibility distor-
tion correction, alignment of the functional space with the
individual subject’s T1-weighted anatomical template (co-
registration was implemented with nine degrees of freedom),
segmentation of brain tissue, and reconstruction of the sur-
face of pial and white matter. All preprocessing steps were
implemented using fMRIprep. Following the methodology
for surface reconstruction in Hebart et al. (2023), surface
reconstruction was performed using Freesurfer recon-all to
use all available T1-weighted and T2-weighted anatomical
images for each subject and subsequently passing the output
to fMRIprep downstream preprocessing steps. However, for
Horikawa andKamitani (2017), due to anatomical scans con-
taining only one instance of T1-weighted and T2-weighted
images for each subject, the default module of Freesurfer’s
recon-all available in the fMRIprep workflow was utilized
for surface reconstruction.

EEG

The EEG data was preprocessed offline using Matlab
(R2020b) (Inc., 2020) and the EEGlab (v14.0.0b) toolbox
(Delorme & Makeig, 2004). The continuous data was fil-
tered using a Hamming-windowed FIR filter, using a 0.1 Hz
high-pass filter to remove low-frequency noise and a 100
Hz low-pass filter to limit high-frequency content. The data
from the electrodes was then re-referenced to the average
reference and then downsampled to a sampling rate of 250
Hz. The continuous EEG data were then epoched into trials
ranging from 100 ms before to 1000 ms after stimulus onset,
with each epoch containing data from 275 time points.

fMRI Single-Trial Response Estimates

Data Denoising

Estimates of single trial response were estimated in a step-
wise manner. First, GLM was fitted to eliminate the noise
components from the response patterns. For the THINGS
dataset (Hebart et al., 2023), the noise component was
estimated by replicating the methodology in Hebart et al.
(2023). ICA was implemented using ICA-MELODIC after
smoothing and high-pass filtering of the preprocessed sig-
nals, and noise componentswere detected using preidentified

threshold configurations by human raters, as mentioned. For
this dataset (Horikawa & Kamitani, 2017), the nuisance
regressors generated by fMRIprep were used for noise nor-
malization. Nuisance regressors for six basic motion param-
eters (three translational and three rotational), frame-wise
displacement FD, and the first ten anatomical component cor-
rections aCompCor based on the highest eigenvalues were
used to denoising each functional run. In addition to these
noise regressors, noise regressors are also constituted of poly-
nomial drift regressors up to degree 4 for denoising both
datasets. Regressing the noise components and the estimation
of the response patternwasperformed in a stepwisemanner to
attribute variance to the noise components independently of
the stimulus responses and the higher noise ceiling estimates,
even in the presence of collinearity between the components
and the brain response (Kay et al., 2013).

General Linear Modeling

BOLD response amplitude was estimated by implementing
the GLMs in a similar manner to the GLMsingle (Prince et
al., 2022) but tuned for stepwise denoising and the estimation
of the response amplitude repeated across sessions forHebart
et al. (2023) and runs for the datasets (Horikawa&Kamitani,
2017). For single-trial response estimates, the hemodynamic
response function (HRF) was modeled using a library avail-
able from 20 available HRFs (Allen et al., 2022; Prince et
al., 2022) to account for the variability of response patterns
for individual voxels. The HRF that performed best for each
voxel was estimated by devising multiple iterations of design
matrices about each of the HRFs and identifying the HRF
with the highestmeanR2 in the stimulus presentations. Ridge
regression models were used to estimate the amplitudes of
the BOLD response. Hyperparameter tuning was performed
to find the optimal value of the regularization parameter for
each voxel using a comprehensive set of parameter values
encompassing 0.1 to 0.9 in intervals of 0.1 and from 0 to 0.1
in step sizes of 0.01. The hyperparameter tuning revealed that
0.1 is themost optimalwith low variability across voxels, and
the regularization parameter was subsequently set to 0.1 for
subsequent model fits. HRF best-fit estimation and hyperpa-
rameter tuning for regularization parameter were performed
using leave-one-out cross-validation, respectively, for the 12
sessions of THINGS dataset using the 100 repeated images
and 35 repetitions of 50 images in the dataset (Horikawa
& Kamitani, 2017). However, for the latter, we performed
a voxel-specific hemodynamic response function estima-
tion in contrast to region-specific HRFs identified for the
THINGS dataset. Although voxel-wise HRF identification is
prone to more biased estimates (Badillo et al., 2013), due to
the unavailability of individual region masks, we performed
voxel-wise HRF identification. Finally, after the response
estimation, to debias the beta coefficients from ridge regres-
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sion, we estimated the final response amplitudes by linearly
rescaling the regularized coefficients against the unregular-
ized coefficients using a subsequent regression model fit.

For this dataset (Horikawa & Kamitani, 2017), the beta
coefficients estimated in the individual T1w space were
transformed into the MNI305 space using Freesurfer’s mri-
vol2vol (Fischl, 2012) for inferences between subjects.

Region Mask Estimation

Region selectivemaskswere estimated using the six category
localizer runs based on region-specific T contrasts for the
selective response to object categories—body parts>objects
(for EBA), faces >objects (for FFA), scenes >objects (for
PPA), and objects>scrambled (for LOC). For estimating the
statistical maps, the functional data were spatially smoothed
(FWHM = 5mm) and subsequently entered as regressors
for each category, i.e., body parts, faces, objects, scenes,
words, and scrambled objects. The resulting statistical para-
metric maps aggregated across functional runs with a fixed
effects model (Woolrich et al., 2004) with corrections for
multiple comparisons (cluster p- threshold=0.0001, extent-
threshold=3.7). Finally, ROI masks were intersected with
an existing group segmentation of category-selective masks
(Julian et al., 2012) to generate region-specific masks for
the fusiform face area (FFA), the occipital face area (OFA),
the extrastriate body area (EBA), the parahippocampal place
area (PPA), and the lateral occipital cortex (LOC).

Since the dataset (Horikawa & Kamitani, 2017) did not
contain any category-specific runs, region-specific masks
were estimated using the Desikian-Killiany atlas in the
MNI305 template. To perform the analysis on this dataset,
we identified the top 30 voxels for each region based on the
magnitude of the response using the same methodology as
Choksi et al. (2022) and included the same as one of the
analysis forks in the specifications tree.

EEGMultivariate Pattern Analysis

For the THINGS-EEG dataset (Grootswagers et al., 2022),
the EEG responses evoked for 200 images for five subjects
were used for our multivariate pattern analysis (Grootswa-
gers et al., 2017). The analyses were performed within the
subjects and the subsequent analysis was performed at the
group level. For our study, the representational dissimilarity
matrices (RDMs) were constructed based on the dissimilar-
ity patterns evoked by each stimulus pair (Kriegeskorte et al.,
2008). With data from 200 images, the RDMs map out the
dissimilarity patterns evoked by all stimulus pairs, i.e., for a
total of

(200
2

)
, i.e., 19,900 pairs.

For our decoding analyses, the voltages of all 64 EEG
channels were used as features for each time point. A reg-
ularized (λ=0.01) linear discriminant classifier ( λ = 0.01)

( λ = 0.01) ( λ = 0.01) ( λ = 0.01) was trained to distin-
guish between patterns evoked by different pairs of images.
To assess the classification accuracy, a leave-one-sequence-
out cross-validation procedure was used. Here, an image
presentation sequence from each category was used as test
data, while the classifier was trained on the remaining image
presentation sequences. This resulted in (19,900 image con-
dition pairs x 275 EEG time points) shaped EEG-RDM
containing the mean classification accuracy scores for the
image pairs in the left-out sequences for each subject. Finally,
the RDMs were averaged across all image pairs to calculate
the mean pairwise classification accuracy over time.

Layer Activation Patterns fromDNNs

We chose foundational models in all modalities, that is, lan-
guage, vision, andmultimodal, comprising a subset of model
architectures used in Choksi et al. (2022), since our hypoth-
esis was to estimate the reliability of the same underlying
hypothesis tested in Choksi et al. (2022) comparing model
modalities and better explaining the representational dynam-
ics of specific regions.

The multimodal architectures for our analysis included
CLIP andVirTex.While CLIP is trained on contrastive learn-
ing (Radford et al., 2021), VirTex (Desai & Johnson, 2021) is
trained on image captioning and constitutes a proper subset
of architectures across various training paradigms as used
in Choksi et al. (2022). For activity patterns, we extracted
the latent representations from the attention pool layer from
CLIP and the average pooling layer for Virtex from the visual
backbone of either model.

Visual foundation model set comprises of models from
vanilla ImageNet trained models like ResNet-50 (Julian et
al., 2012) and BiT-M (Kolesnikov et al., n.d.), adversari-
ally robust models (AR-L2, AR-L4, AR-L8) (Salman et al.,
2020), and stylized ImageNetmodels, amodel pre-trained on
only stylized and original ImageNet images, a model trained
on stylized and original ImageNet, and anothermodel further
fine-tuned on ImageNet post-training (Geirhos et al., 2018).
Adversarially robust models are more human-like in their
behavior, i.e., object detection performance is more resilient
to OOD shifts due to adversarial noise in the dataset. Includ-
ing stylized models, since the inductive biases introduced by
training on regular ImageNet samples are more tuned toward
texture specificities than other more prominent shape-reliant
object features (Geirhos et al., 2018). For models with a
visual foundation, the representations from the average pool-
ing layer were used to create the RDMs.

Estimating Representational Dissimilarity Matrices

For EEG and fMRI, RDMs were created using different
methodologies, replicating the paradigm followed by the
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original authors in respective data modalities. The RDMs
for the EEG data were created using the pairwise classifi-
cation accuracy of the linear discriminant analysis model
with a higher accuracy that indicates greater separability,
translating into greater dissimilarity for the given pair of
categories (Kaniuth & Hebart, 2022). For fMRI and DNN,
response patterns for categories were compared using Pear-
son’s correlation, with lower scores corresponding to higher
dissimilarity between categories.

Comparing Representations acrossModel Modalities

Latent representations across model modalities demonstrate
varying degrees of correspondence to brain response depend-
ing on the region of interest. Similar results have been
reported in Conwell et al. (2024); Wang et al. (2023); Storrs
et al. (2021); Oota et al. (2025), where depending on the
training domain, viz. images, texts, or both, latent represen-
tations from a model better correlate to the elicited pattern
as recorded in fMRI BOLD signals. For our analysis, we
also constrained our comparisons across the four regions,
viz. visual region, fusiform face region, hippocampus, and
parahippocampal region. For computing model correlation
with a particular brain region, we used mean Pearson’s cor-
relation coefficient across subjects between individual brain
region RDMs and model RDMs. Similarly to Choksi et al.
(2022), the correlation score for each model within a modal-
ity was used as independent samples for a modality.

Specification Curve Analysis

Alternate Specifications for fMRI

Our primary goal for both the fMRI specifications curve anal-
ysis was to evaluate analytical forks post-preprocessing. Our
alternate specifications were tuned for either of the datasets
depending on the respective analysis goals and data avail-
ability. Our analysis emphasized in particular the reliability
of various normalization approaches and ROI mask estima-
tion methods, as these steps have previously been linked to
sources of noise in the estimation process for fMRI data
processing pipelines(Ramírez, 2017; Murphy et al., 2009;
Viswanathan et al., 2012; Friston et al., 2006; Duncan et al.,
2009).

For the THINGS fMRI pipeline, the original pipeline
implemented signal normalization on two scales: runwise
and global. Although the fMRI literature presents various
normalization techniques, the original analysis employed a
percent signal change for run-wise normalization. In our
comprehensive analysis, we explored three normalization

methods at both the run-wise and global levels: percent signal
change, z-standardization, and mean centering (demean-
ing). Additionally, we introduced a fourth option for global
normalization—omitting this step completely, given that the
signal had already undergone local normalization.

Furthermore, we explored alternative approaches for HRF
selection and ROI mask estimation. For HRF selection in
each region of interest, while the original pipeline was
selected based on the mean R2 between sessions, we devel-
oped an alternative method that selects HRF based on the
function that produces the highest R2 between sessions
the most frequently. For ROI mask estimation, we created
contrast maps by sampling exhaustive combinations of 2,
3, 4, and 5 runs from the six available runs, resulting in(6
k

)
contrast maps for k=2,3,4,5. For each k, we generated

two individual-level masks from these contrast maps, one
through the union and another through the intersection of the
maps. This approach yielded six alternative region masks in
addition to the original mask, allowing us to evaluate the
reliability of mask estimation methods for downstream RSA
inference, particularly given the high degree of variability
observed across sessions in active voxels and the limited sam-
ple size of only six runs. These methodological choices in
normalization, HRF selection, and mask estimation resulted
in 336 distinct analytical configurations including the origi-
nal pipeline, the details of which are described in Table 1.

Our specification curve analysis for this dataset (Horikawa
& Kamitani, 2017) focused exclusively on modifying the
analysis choices during the response estimation phase, as
we were unable to include variations in masking meth-
ods, as it was not possible to employ data-driven mask
estimation for regions such as the hippocampus and parahip-
pocampus. Therefore, our specification alternatives were
confined to the post-preprocessing stages up through fMRI
response estimation. We maintained consistency with our
previous specification curve analysis for RDM consistency
by implementing the same alternative configurations. The

Table 1 Alternative specifications for fMRI analysis

RTN GTN SR BHRF RU MM

PSC RCFM ZSR H 6R I

Z-S RPSC NZSR HM 3R U

CFM RZ-S 4R

OF 5R

RTN: PSC % signal change, Z-S Z-standardization, CFM mean cen-
tering; GTN: RCFM Mean centering, RPSC % Signal change, RZ-S
Z-Standardization, OF None; SR: ZSR Z-scoring, NZSR None; BHRF:
H Using mean, HM Using mode; RU: R runs; MM: I Intersection, U
Union. 1st row corresponds to original specification
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analysis choices included run-wise signal scaling (percent
signal change, data demeaning, z standardization, and no nor-
malization as a new addition), global signal normalization
(percent signal change, data demeaning, z standardization,
and the option to skip global rescaling given prior run-wise
scaling), and HRF selection of best fit based on explained
variance (R2) using eithermean R2 across runs or frequency-
based selection (choosing HRF that performed best most
often across runs). Based on the results of our previous
analysis,we removed a particular set of combinations for nor-
malization, viz. performing a global percent signal change
transformation only when the run-wise normalization step
was skipped. These methodological choices yielded 26 dis-
tinct pipeline configurations (4 ∗ 4 ∗ 2 = 32− (3 ∗ 2) = 26).
Unlike our previous specifications curve analysis that exam-
ined the robustness of the RDM, we did not incorporate
the original pipeline specification in this analysis due to the
availability of the pipeline recipe. In addition to all these,
we included an alternate specification for region masks, i.e.,
using the region masks directly, instead of employing the
top-30 most responsive voxel selection. Thus, our analysis
included 52 alternate specifications in total.

Alternate Specifications for EEG

We devised our specification sets by altering the decisions
involved in pairwise classification accuracy for EEG for
the whole brain and region-specific electrode maps. We
devised configurations from channel selection to estimate
cross-validation folds for accuracy for EEG analysis. The
region electrode combinations included a diverse set with
each of the four regions, that is, frontal, central, temporal, and
parietal-occipital, constituting forks of the specifications tree,
and the whole brain electrode as a separate fork. The cross-
validation fold for RSA in EEG identifies the sensitivity of
the LDA classifier to varying exemplars for a particular pair
of conditions, identifying the classifier’s reliability in dis-
criminating the characteristics latent in the EEG signal. We
used an exhaustive set of folds for cross-validation. Here, k
sequences, ranging from 1 to 10, were reserved as test data
while training the classifier on the remaining (12-k) image
presentation sequences for each category. To further assess
the robustness of our findings post-decoding, we focused our
SCA on RDMs generated at four different time points (150
ms, 200ms, 250ms, and 300ms post-stimulus) and also aver-
aged the RDMs across the entire post-stimulus time window
(0 to 996 ms). This gave us five different sets of RDM speci-
fication for performing our SCA in the post-decoding stage.
In total, 10 * 5 * 5 = 250 specifications, including the origi-
nal specification that used whole brain electrodes along with
leave-one-sequence cross-validation, and the RDM gener-
ated by five different temporal profiles were used as alternate
specifications.

Results

Our first objective was to test how pipeline configurations
influence the significance of estimated RDM across neu-
roimaging modalities. To this end, we present two sets of
results: one for task-based fMRI and one for EEG data.
And, for fMRI data, we further demonstrated how model
hypotheses tested using RSA are influenced by the analysis
choices using a subset of our original specification. Finally,
we also show a novel data-driven approach for identifying
robust configurations for neuroimaging analysis and how the
same results in reliable pipeline configurations for analysis
pipelines with high degrees of freedom, such as fMRI-based
RSA.

Robustness of fMRI-Based RSA to Alternate
Specifications

We evaluated the significance of the RDMs resulting from
each pipeline configuration using a two-sided significance
test for rank correlation, Kendall’s τA. Kendall’s τA was esti-
mated by comparing the RDMs resulting from each pipeline
configuration with the RDM resulting from the original
configuration. Using the 19 shuffled samples, we estimate
the p-value of the RDMs from each pipeline configuration.
Finally, for an RDM from an alternate specification to be sig-
nificant, similarity to theRDMfrom the original specification
(here Kendall’s τA) for the original data in comparison to the
shuffled samples must cross the threshold corresponding to
the significance level(α).

Our results (see Fig. 1) showed significant RDMestimates
at α=0.025 for 126 of the total of 335 alternative specifica-
tions, with the original specification trivially true.

The specification curve for the analysis is illustrated,
showing that in roughly 65% of the alternate specifications,
the mean response patterns resulting from the alternate spec-
ifications used to create the RDMs are not significantly
different from those estimated from the null samples. This
result highlights that the sparse sampling (Turner et al., 2018)
used in most RSA studies is prone to introduction of bias
in the pipeline due to the compositional analytic interaction
with task-based fMRI with low SNR.

We also found that the original specification is quite frag-
ile due to changes in the analysis choices. With the change
in one decision point for any specification choices, we have
analyzed (six in total), resulting in almost half of pipeline
configurations producing nonsignificant RDMs. Of the total
possible 11 analysis choices, changes to only six (see Fig. 7
for a split of each analysis choice), keeping every other
configuration unchanged, produced correlations significantly
different from the null distribution.
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Fig. 1 Specifications curve for
fMRI

Robustness of EEG-Based RSA to Alternate
Specifications

For EEG, the significance of the RDMs resulting from
pipeline configurations was also evaluated using a two-sided
significance test for rank correlation, Kendall’s τA. Kendall’s
τA was used to statistically evaluate the differences between
the representational dissimilarity matrices (RDM) of our
original, unshuffled EEG data and those derived from the
shuffled samples in every pipeline configuration. We cre-
ated a baseline for comparison by randomly shuffling the
stimulus labels in the time series data for each stimulus
presentation, and we repeated this process 10 times to con-
struct a null distribution. For each shuffle, we calculated the
subject-wise representational dissimilarity matrices (RDMs)
and estimated their mean time-varying decoding accuracy.
We then calculated the p values by comparing the representa-

tional dissimilaritymatrices (RDMs) of the original datawith
each pair of k values of the shuffled samples using Kendall’s
τA.

The analysis showed significant results [p < 0.025] (see
Fig. 2) for all 250 specifications, indicating the high robust-
ness of RSA based on EEG. This robustness was observed
in the configuration space of 10 leave-k-sequence-out cross-
validation folds (k = 1:10), the five temporal RDM profiles
(150 ms, 200 ms, 250 ms, 300 ms, and the average of 0–
996 ms), and both the complete 64 channel montage and the
region-based electrode groupings (frontal, central, temporal,
and parietal occipital).

The decoding model consistently produced significant
results for all specifications, indicating that the model is sta-
ble and reliable across various electrode, cross-validation,
and temporal configurations. This suggests that the model
successfully captures the underlying neural patterns that

Fig. 2 Specifications curve for
EEG
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correspond to the stimuli presented. Unlike fMRI, which
showed robustness for only 126 of 335 specifications, the
alternative specification curve analysis for EEG indicates a
high degree of robustness across all choices in the pipeline.
Consistent, significant results across cross-validation config-
urations, electrode groupings, and temporal profiles indicate
the generalizability of themodel, which shows that it reliably
decodes EEG data without overfitting. These findings high-
light the robustness of EEG decoding pipelines for analyzing
the dynamics of neural representation (Table 2).

Reliability of Model-Based Hypothesis Evaluation
Using RSA

The primary analysis of Choksi et al. (2022) investigated
whether any particular class of models is more similar
to another with the individual brain regions, namely the
fusiform area, the visual region, the parahippocampal area,
and the hippocampus. Specifically, the hypothesis of interest
was involving the hippocampal region and the performance
of multimodal model class in comparison to the other two
for that particular region—models like CLIP and VirTex
with both language and vision backbones are better in pre-
dicting the response geometry than unimodal vision models
like ResNet-50 and language models like BERT and GPT-
2. The final statistical t-test was performed on normalized
RSA scores, which were calculated using Pearson’s corre-
lation coefficient between the subject RDM and the model
RDM. The score was divided with the subject-specific noise
lower bound for the particular region before averaging among
the participants to produce the final score for each model.
Although the noise ceiling was considerably high for the
other three regions, viz., visual region, fusiform, and parahip-
pocampal area in the range of 0.2−0.6, it was much lower for

Table 2 Alternative specifications for the EEG analysis pipeline

Electrode Cross-validation RDM time
selection strategy window

Whole brain Leave-1-out 200ms

Frontal Leave-2-out 150 ms

Central Leave-3-out 250 ms

Temporal Leave-4-out 300 ms

Parietal-
Occipital

Leave-5-Out Averaged
(0–996ms)

Leave-6-out

Leave-7-out

Leave-8-out

Leave-9-out

Leave-10-out

Each unique pipeline is formed by selecting one option from each of the
three parameter columns. 1st row corresponds to original specification

the hippocampus, around 0.1 and 0.15 even with the 30 top
voxel selection paradigm, which improved the noise ceiling
bounds over the original region-specific voxel set. Thus, this
set of tests encompassing a wide range of normalized RSA
scores with varying ranges of noise ceilings provides a basis
for reevaluating the hypothesis of the RSA-based model in
regions with varying degrees of signal-to-noise ratio (SNR).

We have presented the results of the original analysis in
Table 3. Analysis in brain regions revealed consistent advan-
tages for multimodal architectures compared to visual and
languagemodels, with visual models demonstrating stronger
effects than language models. The fusiform area exhib-
ited notable positive effects for both multimodal and visual
models when compared against language models. In the
hippocampal region, a clear hierarchical pattern emerged—
multimodal models showed the strongest effects, followed
by visual models, and then language models, with signifi-
cant differences between all three classes. In particular, only
multimodal models reached the threshold for the hippocam-
pus noise ceiling, a feat not achieved in other brain regions.
This comprehensive analysis was subsequently validated by
replication using a selective subset of our predefined analyt-
ical specifications to confirm the observed modality-specific
advantages in relation to brain region RDMs.

We re-tested each of the region-specific statistical tests
using our set of alternate specifications to estimate the differ-
ence in modality-specific model advantages when compared
with brain region RDMs.

Analysis of the fusiform region revealed differential
effects across model modalities in the initial investigation.
Although a positive systematic trend emerged from mul-
timodal to unimodal models, statistical significance was
limited to comparisons with language models, where both
visual and vision languagemodels demonstrated higher RSA
scores. However, our analysis of the specification curve
(Fig. 3) revealed no robust statistically significant effects in
52 pipeline configurations.

Table 3 Comparison of effects across regions from (insert ref)

Region MxV MxL VxL

Visual region Positive Positive Positive

Fusiform area Positive Positive(*) Positive(*)

Hippocampus Positive(*) Positive(*) Positive(*)

Parahippocampus Positive Positive Positive

* indicates significant differences between the classes (p < 0.05).MxV,
multimodal models vs vision models;MxL, multimodal models vs lan-
guage models; VxL, vision models vs language models. Positive effect
indicates that the effectwas higher for thefirstmodel class on the column
label, i.e., if MxV is the header, then the positive effect indicates that
the multimodal model class, on average, has a more positive similarity
score with brain RDMs than vision models
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Fig. 3 Specifications curve for model class comparisons for fusiform
area RDMs. Positive effect indicates that the effect was higher for the
first model class on the column label, i.e., if MxV is the header, then

the positive effect indicates that the multimodal model class, on aver-
age, has a more positive similarity score with brain RDMs than vision
models

The original analysis (Table 3) showed decreasing but
nonsignificant similarity between visual region RDM and
model classes, frommultimodal to visual to languagemodels.
Our specification curve analysis revealed 13 of 52 pipeline
configurations that demonstrated significant effects (p <

0.05) following this trend in all pairwise comparisons, as
shown in Fig. 4. Notably, multi-modal vision-language mod-
els showed a significantly stronger correlation with visual
region representations compared to unimodal vision models.
In essence, about 40% of specifications revealed consistent
significant undetected effects in the original analysis.

In the original analysis, the parahippocampal region
revealed a pattern of decreasing but nonsignificant similar-
ity across model classes, with multi-modal models showing
the strongest correlation, followed by visual models and
then language models. However, our specifications curve
analysis painted a notably different picture, demonstrating
the variability one might observe by employing alternate
pipeline configurations, as shown in Fig. 5. Firstly, one set of
specifications (13 in total) demonstrated a significant effect
for multi-modal models compared to visual models. The
language models set also produced a net positive effect dif-

ference to visual models for that set of specifications but did
not cross the significance threshold. Another group of speci-
fications (13 in total) displayed an effect entirely in contrast
to this—with visual models producing significant similar-
ity effect difference compared to language and multi-modal
models in 10 configurations. The comparison of multi-modal
to language models was also significant for those speci-
fications, with the latter performing worse. In addition, a
similarly significant effect difference in favor of visual mod-
els was observed from three more specifications. Finally,
another group of pipeline configurations (13 in total) pro-
duced only a significant effect difference for languagemodels
with visual models in favor of the former, with the multi-
modal model effect confined between the effects from two
other model modalities with no significant difference with
either.

Choksi et al. (2022) analysis revealed significant effects
in all comparisons of the hippocampus model classes, with
multimodal models showing the highest similarity, followed
by visual and language models. Both multimodal models
reached the neural RDM noise ceiling, albeit at notably low
levels. However, our specifications curve analysis produced

Fig. 4 Specifications curve for model class comparisons for visual
region RDM. Positive effect indicates that the effect was higher for
the first model class on the column label, i.e., if MxV is the header, then

the positive effect indicates that the multimodal model class, on aver-
age, has a more positive similarity score with brain RDMs than vision
models
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Fig. 5 Specifications curve for model class comparisons for parahip-
pocampal area RDM. Positive effect indicates that the effect was higher
for the first model class on the column label, i.e., if MxV is the header,

then the positive effect indicates that the multimodal model class, on
average, has a more positive similarity score with brain RDMs than
vision models

results that were incongruent with the original results, as
shown in Fig. 6. Although the directionality of the effect
was consistent for most specifications, none was statisti-
cally significant. Moreover, half of the pipelines produced
a significant effect difference for visual models compared to
multi-modal models.

This cacophony of results seen across theoretically con-
sistent alternative specifications presents clear evidence for

caution in interpreting results of model-based hypothesis
tests of intrinsically unreliable primary data.

Finding Robust fMRI Specifications

The set of alternative specifications defined in SCA is
obtained by a branching process in the garden of analy-
sis forks, which eventually yields specifications that are

Fig. 6 Specifications curve for model class comparisons for hippocam-
pal area RDM. Positive effect indicates that the effect was higher for
the first model class on the column label, i.e., if MxV is the header, then

the positive effect indicates that the multimodal model class, on aver-
age, has a more positive similarity score with brain RDMs than vision
models
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significantly or non-significantly different from the null dis-
tribution. Therefore, it is possible to model the mapping of
specifications to the binary prospect of being significant or
not by fitting a decision tree classifier (Quinlan, 1983) using
the specification choices as features and significance as the
binary target variable. Examination of the structure of the
learned tree reveals the importance of each parameter spec-
ification based on frequency. The path of the decision tree
leading to leaf nodes with the highest number of significant
and nonsignificant specifications is tabulated in Tables 4 and
5, respectively. Evidently, using five runs seems to be the
most predictive of significance for specifications as shown in
Table 4, although even here, selecting some choices in other
analysis forks can lead to clusters of nonsignificant specifi-
cations, as shown in Table 5.

Based on the decision tree’s structure, we defined themost
robust specification as the one that leads to the least num-
ber of non-significant specifications if one analysis choice is
varied. For the set of alternative specifications we used, the
specification changes for the most robust specification (PSC-
OF-ZSR-H-5R-I) (see Fig. 7). For this specification, changes
in either HRF estimation strategy, z-standardization of resid-
uals, or normalization methods do not affect the significance
of the correlations. Only using union instead of intersection
for ROI definition results in a nonsignificant combination.

Comparedwith the original specification, this does not use
any form of global normalization. Thus, by simplifying the
original specification in this way, one can arrive at a specifi-
cation that is substantially more robust to further alternative
specifications, at least with reference to the set of specifica-
tions and dataset we have used.

Discussion

Neuroscience is replete with studies based on fMRI using
stimulus-yoked designs to make claims about the loca-
tion of various cognitive phenomena (Weisberg et al.,
2008). Methodological concerns about Type-1 and Type-
2 errors have been prominent in non-invasive neuroscience
research (Pashler & Wagenmakers, 2012; Barch & Yarkoni,
2013).General concerns about false positives in a highly flex-

Table 4 Specification choices producing the largest number of signifi-
cant correlations

RTN GTN SR BHRF RU MM #

Any OF Any Any 3R U 12

Any RCFM Any Any 5R I 12

Any RZ-S Any Any 5R I 12

Any OF Any Any 5R I 12

Any PSC Any H 5R U 6

Table 5 Specification choices producing the largest number of non-
significant correlations

RTN GTN SR BHRF RU MM #

Any Any Any Any 3R I 48

CFN Any Any HM 4R Any 16

PSC Any Any HM 4R Any 16

Any OF Any Any 5R U 12

Any PSC Any Any 5R I 12

ible data analysis pipeline have beenwidely accepted (Kelly Jr
& Hoptman, 2022; Gelman & Loken, 2014). However, prin-
cipled approaches to solving the problem have been hard
to come by; current practice has primarily emphasized the
use of preregistration and openness to publication of null
results or failed replications (Nelson et al., 2018). However,
recent empirical evidence from across disciplines shows that
p-hacking, i.e., altering pipelines post-hoc to meet analy-
sis goals, does not actually reduce unless preregistration is
accompanied by predefined analysis plans (PAP) (Brodeur et
al., 2024).

In this paper, we argue that for the same neural com-
putational model assumptions, there may exist multiple
combinations of valid analysis choices for encoding and
decoding model estimation pipelines, all consistent with a
declared high-level PAP. For example, multivariate encoding
and decoding analyses in fMRI and EEG, respectively, work
under a similar hypothesis of the underlying feature space to
transform the representations of features from the underly-
ing feature space to the activity space, forming the basis for
the development of underlying encoding and decoding mod-
els (Naselaris et al., 2011). However, pipeline specification
combinations span from these single underlying hypotheses
to a multidimensional parameter space for both modalities,
and more so for fMRI pipelines. Therefore, we suggest that
evaluating the consistency of the results obtained in alterna-
tive specifications is necessary for inferences resulting from
processing pipelineswithmanydegrees of freedom, a charac-
teristic of non-invasive neuroscience research. In this paper,
we showed how to do this for one particular analysis, RSA.

In light of the large garden of forking paths that is known
to exist in the processing of fMRI data for stimulus-linked
experiments, we adapted specification curve analysis for rep-
resentation similarity analyses based on fMRI data (Simon-
sohn et al., 2020), focusing on perturbing the analytical
stages, which are both critical and epistemically fragile. We
showed that, compared to a baseline EEG-based represen-
tation similarity analysis pipeline, the fMRI pipeline shows
significant variability in the results of multiple theoretically
reasonable alternative specifications. In particular, only a
third of the set of alternative specifications achieved statisti-
cal significance in our analysis. In contrast, RSA using EEG

123



Computational Brain & Behavior

Fig. 7 Proportion of analysis pipelines producing significant RDMs. Top panel shows how shifting each analysis choice results in significance (for
the original pipeline configuration). Bottom panel shows how shifting each analysis choice results in significance (for our identified most robust
pipeline configuration)

as primary data proved to be substantially robust to alterna-
tive specifications. We also found that model-based analysis
using fMRI data inherits and even amplifies the frailty of the
primary data to alternative specifications, such that almost no
conclusions from the original analysis can be reliably sup-
ported by a specifications curve analysis. We finally showed,
using a decision tree-based approach, how a small change in
the original specification could make it more robust.

However, we note that even the most robust specification
identified in our exercise would still not reduce the overall
fragility of the fMRI analysis pipeline. For example, switch-
ing the mask estimation method from I to U in the robust
specification discovered in our analysis yields a large num-
ber of nonsignificant alternatives, as evident by the presence
of this modified specification in Table 2. Moreover, we could
not identify any theoretically sensible pattern to characterize
specifications failing to pass the significance test based on
SCA. Thus, we conclude that, in addition to its known unre-
liability (Elliott et al., 2020), single-test fMRI data is also
fragile to the analysis choices in its information processing
pipeline. Therefore, caution is warranted in interpreting rep-
resentational similarity results using fMRI data.

In our analysis, given the combinatorially large space of
possible configurations emerging from the alternate choices
at various stages of the analytical pipeline in task-based
fMRI, the specification set we selected necessarily repre-
sents a modest subset of the set of all theoretically reasonable
analysis specifications—from noise normalization to choice
of dissimilarity measures in RSA—a multitude of methods
can apply towards the same analysis goals.

In particular, in our SCA analysis for fMRI, we con-
structed the set of requirements by focusing on analytical
possibilities after pre-processing in the respective pipelines.
The specification set constructed for both analyses in fMRI
included only one set of noise regressors to remove non-
experimental noise artifacts from raw fMRI time series.

Other possible combinations of anatomical components,
drift regressors, ICA regressors, and other features that con-
tribute to physiological and motion artifacts could also be
used to construct the final nuisance regressors. For exam-
ple, using a different degree of polynomial for modeling
drift artifacts, or using anatomical component correction
(aCompCor), explaining half of the variance among the
principal components, or even using alternate thresholding
criteria for filtering the ICA regressors, are all theoreti-
cally salient approaches toward the same goal, discriminating
noise from underlying neural patterns (Behzadi et al., 2007;
Charest et al., 2018). Moreover, other methods, such as mul-
tivariate and univariate noise normalization methods, are
also prevalent and often used interchangeably in processing
pipelines (Walther et al., 2016; Ritchie et al., 2021).

Similarly, for another core component of the pipeline,
namely, statistical modeling, there exist multiple alterna-
tives in addition to the ridge regression method employed
for the fast event-related design, such as least squares sep-
arate (LSS) (Mumford et al., 2012; Turner et al., 2012),
inverse transformed encoding model (ITEM) (Soch et al.,
2020), andGLMvariantswith alternative regularization tech-
niques, such as alternative regularization techniques such as
LASSO (Gaudes et al., 2011).
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HRF estimation methods also demonstrate similar flex-
ibility in their choice with effervescence of methods that
coexist in the fMRI literature (Lindquist et al., 2009). In
our specification set, we used a library of 20 HRFs, derived
from FIR models on a large-scale dataset to model indi-
vidual differences (Prince et al., 2022), and later fine-tuned
them in regions or voxels for analyses. However, pipelines
often leverage FIR models, sFIR models, alternative basis
sets (like spectral, spline, or gamma functions), and even
canonical HRF and its derivatives for HRF estimation. In
addition to the plethora of options emerging from com-
binatorial juxtaposition of the alternatives available across
the various analytical stages, there exist end-to-end data-
driven modeling techniques like GLMDenoise (Charest et
al., 2018), encapsulating the entire pipeline from denoising
to response estimation. Further downstream in the analysis
pipeline, voxel selection also presents a handful of alterna-
tives in addition to data-driven region masks from category
localizers—using various parcellations for ROIs from pre-
existing atlases, searchlight analyses (Kriegeskorte et al.,
2006), or other data-driven parcellation schemes (Degryse
et al., 2017; Parmar et al., 2022). Finally, for RSA, the dis-
similarity measure itself presents another potential source of
bias (Walther et al., 2016), adding another degree of potential
flexibility in fMRI response estimation.

Fundamentally, in any specification curve analysis (SCA),
analysts make their own choice of which set of specifications
to include andwhich to exclude in the analysis (Simonsohn et
al., 2020). This choice can itself be questioned on grounds of
arbitrariness. However, it is important to note that the value
of the SCA analysis is not based on the use of a comprehen-
sive set of specifications but rather on the ability to identify
how the results fluctuate as a function of changes in specifi-
cations (Simonsohn et al., 2020).

Including one or more of the alternatives listed above in
the set of specifications may individually have made some
difference to the trajectory of the specification curve, but it
is highly unlikely that including them would have changed
its overall shape for either measurement modality.

We conclude with the observation that SCA could and
should be applied without loss of generality to nearly all
event-locked fMRI data analysis protocols, with suitable
modifications to the set of alternative specifications we used
in our work.
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