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ABSTRACT

Multiple object tracking (MOT) involves simultaneous tracking of a certain number of target
objects amongst a larger set of objects as they all move unpredictably over time. The prevalent
explanation for successful target tracking by humans in MOT involving visually identical
objects is based on the Visual Indexing Theory. This assumes that each target is indexed by a
pointer using a non-conceptual mechanism to maintain an object’s identity even as its
properties change over time. Thus, successful tracking requires successful indexing and the
absence of identification errors. Identity maintenance and successful tracking are measured in
terms of identification (ID) and tracking accuracy respectively, with higher accuracy indicating
better identity maintenance or better tracking. Existing evidence suggests that humans have
high tracking accuracy despite poor identification accuracy, suggesting that it might be
possible to perform MOT without indexing. Our work adds to existing evidence for this
position through two experiments, and presents a computational model of multiple object
tracking that does not require indexes. Our empirical results show that identification accuracy
is aligned with tracking accuracy in humans for tracking up to three, but is lower when
tracking more objects. Our computational model of MOT without indexing accounts for
several empirical tracking accuracy patterns shown in earlier studies, reproduces the
dissociation between tracking and identification accuracy produced earlier in the literature as
well as in our experiments, and makes several novel predictions.

INTRODUCTION

Object tracking is essential for any system or organism that lives through time. An example
cited by Pylyshyn (2007, 2009) concerns the construction of a system that Pylyshyn et al.
(1978) attempted to build in order to perform geometrical reasoning in a psychologically plau-
sible manner (Figure 1). Like a human, such a system was constrained to notice various aspects
of the image over time without having access to all the aspects simultaneously. In particular,
this required positing that there is a mechanism by which one can say that two visual elements
at two different points of time refer to the same “thing”. Two examples based on Figure 1 (iv)
include: (a) noticing that the intersection that has a right angle in (iv) is the same intersection
formed by the two straight lines L1 and L2 which were noticed earlier in (iii), or also, (b) the two
straight lines are indeed the same ones that were drawn and noticed yet earlier in steps (i) and
(ii). Eventually, this, amongst other things, led Pylyshyn (1989) and Pylyshyn and Storm (1988)
to consider the existence of a non-conceptual mechanism that can solve the correspondence
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problem of identifying which relevant visual element at a time point t is which relevant visual
element at another time point t + Δt.

This mechanism is Pylyshyn’s famous Fingers of INSTantiations (Pylyshyn, 1989, 2001)
proposal, which suggests the existence of more-than-one pointers1 providing parallel non-
conceptual access to visual elements through time. A FINST has been described as a sticky
reference to visual elements that keeps pointing to the elements even as their location or
other properties change over time. The FINST uses only the non-encoded (non-represented,
non-conceptual) properties to maintain the reference, not the encoded (represented)
properties.

MOT tasks in the literature can be broadly classified into two kinds: (i) those involving visu-
ally identical objects (ii) those involving visually distinct objects. In MOT tasks with visually
distinct objects, both indexing as well as the visual distinctiveness of the target objects can be
used to perform tracking, e.g., Horowitz et al. (2007) suggest a significantly greater capacity to
track visually distinct objects than visually identical objects. Since our work focuses on the
nature of indexing, our work uses MOT tasks involving visually identical objects. Thus, we
focus on a classic variant of MOT (Figure 2) that involves the tracking of n target objects
amongst m visually identical distractor objects, all moving randomly.

Following Vul et al. (2009), we adopt a definition of tracking accuracy as the percentage of
the tracked objects that are targets at the end of the trial. Similarly, success in identification is
measured using identification (ID) accuracy, defined as the percentage of tracked objects that
are labelled correctly. For both measures, the number of targets is the same as the number of
tracked objects in the experiments we consider. In particular, for an MOT trial with n targets
and m distractors, suppose that the participant identifies k ≤ n targets correctly, and the
remaining (n − k) objects that the participant identifies as targets are actually distractors. Then,
the tracking accuracy2 is given by k/n. Each target may be given a label to check its identity
maintenance by the participant. The labels are visible only at the start of the trial.

1 Throughout the paper, the terms FINST, pointer, and index have been used interchangeably as a noun. The
term “index” is also used as a verb in several places.
2 In our experiments, as well as the experiment 4 of Pylyshyn (2004) relevant to our work, we ask participants

to identify all the targets and label all of them. In this case, the tracking accuracy is given by k/n. However, in
some other experiments in the literature, at the end of the MOT trial, one of the object becomes visually dis-
tinctive. This object is a target or a distractor with equal probability. Following this, the participant is asked to
indicate whether the object is a target or a distractor. In this case, the participant has a k/n probability of iden-

tifying the target correctly if the object is a target and a (n − k)/n probability of identifying the distractor incor-
rectly if it is a distractor - since, according to the participant, the remaining (n − k) objects are also targets. In
other words, the participant also has a k/n probability of identifying the distractor incorrectly. Overall, the aver-
age accuracy in this case boils down to 1/2 * (k/n) + 1/2 * (k/n) = k/n.

Figure 1. Illustration of how the process of noticing things in the environment happens in a step-
by-step manner using a geometric reasoning task. (i) Notice the line L1. (ii) Notice another line L2. (iii)
Notice that the L1 and L2 intersect at P. However, notice that this also requires noticing that the L1
and L2 are the same ones that we had noticed when we were processing step (i) and (ii). (iv) Notice
that the angle at P is actually a right angle. Again, notice that this also requires noticing that this P is
the same P that we had considered in (iii).
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According to the FINST-based explanation of MOT (Pylyshyn, 2004), at the start of the trial,
the participant forms an association between each target (thus, its identity) and its label. During
the trial, the labels disappear and the objects move around. The participant maintains each
tracked object as an individual entity, and does not confuse its individuality with other tracked
objects. Then, at the end of the trial, the participant retrieves from memory the label associated
with each tracked object, and responds accordingly. Suppose that the participant labels p ≤ n
targets correctly. Then, the ID accuracy is given by p/n.

Contemporary computational models of MOT of visually identical objects are also usually
premised on the existence of FINST-like non-conceptual pre-attentive indexes in the visual
system (Alvarez & Franconeri, 2007; Oksama & Hyönä, 2008; Srivastava & Vul, 2016)3. These
indexes enable the models to establish a correspondence between the representation of an
object that is being noticed at the current moment and an earlier one. Pylyshyn’s work indi-
cates that the number of FINSTs available in human visual perception to be between 4–5.
However, Alvarez and Franconeri (2007) have shown that, MOT task participants are able
to track not just 4 but even 8 objects with 94% accuracy (at sufficiently low movement
speeds). Their experiments also noted that the speed-threshold for 94% accuracy deteriorated
smoothly with increasing number of targets happens smoothly rather than abruptly. Overall,
these results suggest either that the number of FINSTs is flexible or that MOT might be possible
without FINSTs.

The strongest prior evidence against the involvement of FINSTs in MOT comes from the
experiments in Pylyshyn (2004), whose results suggest a disparity between ID and tracking
accuracy. In this case, the ID accuracy is worse than, as well as deteriorates more rapidly than
tracking accuracy as a function of tracking duration. For instance, for a tracking duration of 10
seconds, tracking accuracy is 70% while the ID accuracy is 30%. Since FINSTs are meant to
provide an apriori incorruptible mechanism to establish a correspondence between two visual
elements, one being accessed currently while the other that was present at an earlier point of
time, they do not offer a natural explanation for the confusion in object identities seen in
Pylyshyn (2004).

In the rest of the paper, we firstly discuss what tracking with and without indexes means
to set the stage for our work. There, we also outline a model of tracking that does not use
indexes. We also elaborate on this model computationally after discussing the two

3 Note that the model described by Oksama and Hyönä (2008) concerns the tracking of visually distinct
objects. However, it is trivial to adapt it to the task of tracking visually identical objects by letting go of the
corrective attention shift involved in step 4b described under its functional description.

Figure 2. A Multiple Object Tracking (MOT) task can be identified by three phases: Left - target designation phase, in which the targets are
highlighted either by using a different color or blinking or both. Center - tracking phase, in which the targets are visually distinct from the
distractors, and all the object move around potentially randomly on the display. Right - response phase, in which the participant is asked to
select all the objects that they think are the targets.

OPEN MIND: Discoveries in Cognitive Science 3

MOT Without Indexes Ayare and Srivastava

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00128/2358160/opm
i_a_00128.pdf by guest on 08 April 2024



experiments, and note that the model can account for several specific empirical results
documented empirically, viz.

1. decrease in tracking accuracy with increasing number of targets
2. decrease in object speed thresholds corresponding to a particular accuracy with

increasing number of targets
3. dependence of tracking accuracy on crowding aka object speed as measured in terms

of scene-widths per second rather than absolute speeds
4. variation in tracking and ID accuracy disparity with increasing trial duration
5. variation in tracking and ID accuracy disparity with increasing number of targets

While accounting for these, our modeling work4 suggests some model-limitations, several
interesting predictions about tracking, as well as on some constraints involved in attending to
multiple objects simultaneously5.

TRACKING WITH AND WITHOUT INDEXES

Before presenting our model, we discuss what it means to say that indexes are involved in
tracking and, thus, what an index-less model should look like.

Both index-based and index-less accounts involve the processing and use of the instanta-
neous location information of the objects by the visual system for the MOT task. The critical
difference between the two accounts is at what stage of information processing the location
information gets used for tracking. The indexes in the Visual Indexing Theory are a part of the
early visual system (Pylyshyn, 2001). They use the location information soon after the early
visual system processes it (Pylyshyn, 2007) (chapter 3). This process is stimulus-driven and
automatic. No representations or concepts are involved6—the location information is necessar-
ily non-conceptual7. On the other hand, an index-less account of tracking requires the loca-
tion information to be represented and made available to the cognitive system before it gets
used for tracking.

Overall, the early visual system processes the location information from the retinal stimulus
into non-conceptual location information. An indexing-based account uses this location infor-
mation for tracking. The visual system further processes and encodes this information, making

4 Code for computational modeling as well as experiments is available at https://github.com/digikar99/mot-wo
-correspondence.
5 A preliminary version of this work has appeared in the Proceedings of CogSci 2023 (Ayare & Srivastava,

2023). The current work extends the preliminary model to accommodate a unitary system, and presents addi-
tional experiments and analysis in support of our conclusions.
6 While representations might refer to any information bearing state, and thus, the early visual system might

represent information in some sense of the term ‘representation’, Pylyshyn (2007) (chapter 3) argues that there
are at least two senses of the term. The first sense, referring to any information-bearing state, is better referred to
as registration. A registration is necessarily causally connected to the world and there is no possibility of mis-
representation. The second sense refers to states that have a possibility of misrepresentation. These have a rep-
resentational content for the organism, thereby determining the organism’s behavior. Above, when we say that
the location information is not represented for index-based tracking, we have used the second sense of ‘repre-
sentation’. In an index-based account of tracking, the location information is only registered and not necessarily
encoded (represented).
7 The location information of the objects present in the early visual system is necessarily non-conceptual and

inaccessible to the cognitive system. Further processing may make this information accessible to the cognitive
system. The information may be conceptual or non-conceptual at that point—we do not comment on it.
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it available to the cognitive system. An index-free account uses this location information. This
process is also summarized in Figure 3.

While presenting support for FINSTs, Pylyshyn and Storm (1988) had reported a computa-
tional model of tracking with assumptions based on the empirical literature available then.
This model—the Serial Tracking Algorithm—was based on the updation of encoded (repre-
sented) location information by the cognitive system and was, therefore, an index-less model.
However, the tracking accuracy possible with this Serial Tracking Algorithm was about 30%.
On the other hand, the human participants had a much better tracking accuracy of 87%. This
disparity led them to accept that tracking happens through a pre-attentive parallel mechanism
that does not require location information to be encoded—the process of using the encoded
location information is too inefficient. This pre-attentive mechanism is precisely that of the
FINSTs or the Visual Indexing Theory.

Pylyshyn and Storm (1988) report that the index-less Serial Tracking Algorithm could not
account for the human tracking accuracy even after several augmentations. However, we pro-
pose that these assumptions are inconsistent with some of the evidence collected since then.
Firstly, the Serial Tracking Algorithm assumes that focal attention moves continuously from one
location to another, passing through all locations between objects. However, Egeth and Yantis
(1997) have indicated that the movement of attention is quantal. Secondly, the algorithm does
not acknowledge events happening at rates beyond 10 Hz (such as the phi phenomena,
Wertheimer, 1912) because even when velocity information was used for tracking, the dwell
time was assumed to be about 100 ms.

Moreover, Scholl et al. (2001) report that in an MOT task, participants indeed have cogni-
tive access to the location information of the targets. In their experiment, all the objects dis-
appeared briefly at the end of a MOT trial. After 200 ms, all but one object became visible
again. The participants had to indicate the location of the disappeared object and whether it
was a target or a distractor. They noted that participants’ accuracy was significantly better for
targets than distractors. Suppose the location information was cognitively inaccessible. In that
case, equal disappearance-detection accuracy would be expected for both targets and distrac-
tors. Contrary evidence, thus, indicates that the location information is cognitively accessible.
Cognitive access requires that the location information is accessed as representations. These
experiments raise questions about the critical assumption behind index-based explanations of
tracking, that the location information is used without it becoming accessible to the cognitive
system. Stronger evidence in support of the position that the early visual system can perform
MOT—per the Visual Indexing Theory—can be obtained by studying MOT in participants with
blindsight; however, we know of no such experiment.

To summarize (see Table 1), if an account of tracking involves updates of representations
then that account would qualify as an index-less account of tracking. On the contrary, if no
representations are involved, and tracking takes place through non-encoded (non-represented)
information using FINST-based pointers, then that will be an index-based account of tracking.

Figure 3. The difference in information processing of an index-based account of MOT vs. a non-
index-based account of MOT.
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MOTUAF: Multiple Object Tracking as Updates of Attended Features

The crux of the index-less tracking approach we propose is two retinotopic maps, one corre-
sponding to the actual features of the objects themselves and another corresponding to the
attended features, which corresponds to the reportable features of the objects. Unlike Blaser
et al. (2000), who explored tracking an object through the feature spaces of color, orientation,
and spatial frequency, our work limits itself to studying MOT in the location space. In this case,
the existence of a map of attended locations as distinct from the map of the actual locations of
the objects is also evident through the reports by Howard and Holcombe (2008) and Howard
et al. (2011), which suggest a dissociation between the representations of positions of the tar-
gets and the actual positions of the targets themselves.

The exact structure of each of the two maps will remain a topic of future work. However, in
general, we consider each map to be comprised of a number of grid cells corresponding to the
different locations on the retinotopic map. Each grid cell of the first map indicates the presence
or absence of an object and only their number but not identity. Each grid cell of the second
map indicates the presence or absence of attention and, equivalently, the represented object
locations.

The updates to this first retinotopic map of objects are stimulus-driven, parallel, and effort-
less. Howard and Holcombe (2008) and Howard et al. (2011) indicate that the dissociation,
aka the time lag between the position representations of targets and their actual locations,
increases with an increasing number of targets. Given that, we expect that the updates to
the map of attended locations are effortful and, thus, happen sequentially or in parallel with
a constrained resource. The sequential nature of updates is also evident through the findings
by Holcombe and Chen (2013) who have noted that the tracking limit for 2 targets is almost
one-half that of 1 target, while the tracking limit for 3 targets is almost one-third of 1 target.

Thus, we propose that the updates of the attended grid cells on the second map constitute
the constrained resource. In this framework, multiple object tracking consists of maintenance
of attended features (in our case, locations) so that they keep corresponding to objects as far as
possible (Figure 4). Such maintenance involves an update of attended features (locations) that
no longer correspond to any objects to other nearby features (locations) that correspond to an
object. The greater the number of targets, the less frequent the updates to each target’s relevant
feature; thus, the maintenance is worse. This assumption is a specialization of more generic
resource constraints found in the works of Alvarez and Franconeri (2007) and Srivastava and
Vul (2016). Alvarez and Franconeri (2007) demonstrate that tracking is limited not by a fixed
number of indexes as the FINST theory suggests but by a shared resource. They relate this
shared resource to the precision with which an object is selected; thus, more the allocated
resource, more is the precision with which the object is selected and lesser the tracking errors.
Srivastava and Vul (2016) incorporate this explanation in a computational model, which they
show can explain trial level variations in MOT performance across different participants. In
MOTUAF, the spatial precision arises naturally from the updates of attended features; the

Table 1. A comparison of an index-based vs. index-less account of MOT.

Index-based account Index-less account

Tracking performed by Early Visual System Cognitive System

Location information is Non-conceptual Conceptual or non-conceptual

Representations are Not involved Involved
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update process is elaborated under “MOTUAF Attention updates” under the section on Com-
putational Modeling.

Most importantly, unlike FINST (Pylyshyn, 1989, 2009) and MOT models based on FINSTs,
all attended locations in our model are indistinguishable except by their locations. The con-
trast is that FINST-based models enable individuating objects without considering their visual
features or locations because a different FINST indexes each object.

We assume that the total number of attended locations can vary within an individual based
on task requirements. We expect an upper limit to the number of attended locations; it is cer-
tainly above 4 given the evidence that subjects can track as many as 8 objects with 94% accu-
racy, moving at low velocities (Alvarez & Franconeri, 2007). We speculate that the limit should
be related to one’s working memory capacity, a question future work should address.

Identity Maintenance Without Indexes

MOT, as proposed here, does not allow the system to access object locations at two different
time steps and, thus, does not require the system to solve the correspondence problem.

To keep track of IDs, we therefore propose that there also exists a separate sequence of IDs.
One possible strategy for maintaining such a sequence is to keep reciting the sequence. To
match objects to IDs, one needs to go over the attended objects in some spatial sequence
while reciting their IDs in that exact sequence.

Alongside the sequence of IDs, there also exists another sequence corresponding to the
attended locations. Such a sequence can be obtained by sorting the attended locations in a
non-decreasing order of x-and-y coordinates. The ID sequence consists of IDs of the objects
arranged according to these attended locations. ID maintenance, then, involves maintaining
the explicit correspondence between the sequence of IDs and the sequence of attended loca-
tions. ID errors arise when one fails to update this correspondence.

Figure 4. An illustration of our model with the shaded grids in the retinotopic grid map indicating the attended locations aka locations sup-
posed to correspond to targets, along with the presence / absence of objects at each location. While indexes provide a location-independent
means to individuate two objects, there exist no such location-independent way to distinguish between two attended locations.
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Our proposed mechanism for object identification yields a concrete testable prediction: as
the number of targets increases, the length of the ID sequence and the attended location
sequence increases. Thus, updating them to maintain the correspondence becomes harder
and thus the tracking-ID accuracy disparity should increase with increasing number of targets.
Experiment 1, discussed in the next section, tests precisely this prediction.

EXPERIMENT 1

Pylyshyn (2004) have previously shown an ID-tracking accuracy disparity with respect to
tracking duration for MOT tasks involving visually identical objects. However, no earlier work
has examined how this disparity varies with changing number of targets. Based on earlier
results, (Pylyshyn & Storm, 1988), we expect the tracking (as well as the ID) accuracy to
decrease with the increasing number of targets. However, in addition to these two main
effects, our proposed explicit ID maintenance mechanism predicts that the participants will
not be able to do correspondence updates as rapidly as required by the changing spatial
sequence of targets. Therefore, the ID accuracy will degrade more rapidly than tracking accu-
racy with the increasing number of targets. We decided to test this prediction against data from
human participants. This MOT experiment involves both ID and tracking tasks, randomly
varying the number of targets across the trials.

Participants

13 participants (8 men, 5 women) participated in the experiment. All had normal or corrected
to normal vision, and none were colorblind. An IRB approved the protocol for the experiment.

Procedure

10 practice trials, followed by 80 main trials were employed. The number of targets varied
from 1 to 8 across the trials. 10 trials for each case of number of targets from 1 to 8 accounted
for the 80 trials. Each trial had 14 objects. The tracking duration in each trial was 5 seconds but
the trials were self-paced and randomized. In each trial, the participant had to select all the
targets and indicate the ID number for each of the target. This procedure was similar to that
employed in Experiment 4 of Pylyshyn (2004).

Materials

For the purposes of the experiment, the visually identical objects comprised of small circles with
a diameter of 10 pixels. The participants sat at a distance of about 60 cm from the display. Thus,
each object subtended an angle of 0.23° at the retina, and the objects were allowed to move in a
720 × 720 pixels square area whose diagonal subtended an angle of 23.5° at the retina.

Results

Repeated measures two-way ANOVAwas conducted with tracking-vs-ID accuracy as one fac-
tor, and the number of targets as the second factor. The results were as per the expectations
discussed above (Figure 5)—there was a significant interaction effect [F(3.46, 41.47) = 37.638,
p = 1.39 × 10−12] as well as significant main effects for number of targets [F(7, 84) = 70.845,
p = 1.49 × 10−32] and task [F(1, 12) = 113.476, p = 1.80 × 10−7].

Figure 6 summarizes the tracking-ID accuracy disparity for each of the number of targets.
The p-values are adjusted according to Bonferroni correction with a factor of 8. The compar-
ison is also performed in terms of Bayes’ Factor in Table 2 (Morey et al., 2015). When number
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of targets is 4 or more than 4, the disparity between tracking and ID accuracies is statistically
significant at an α-level of 0.05 and a Bayes factor threshold of 30.

Discussion

Experiment 1 checked how the disparity between tracking and ID accuracy varies as the num-
ber of targets increase from 1 to 8. Empirical evidence from this experiment indicated that the
ID accuracy was indeed worse than tracking accuracy when the number of targets 4 or more.
Further, we note that in Pylyshyn (2004), as well as our experiment 1, objects were allowed to
come arbitrarily close to each other and cross paths. Trick and Pylyshyn (1994) have used
indexing to explain subitizing. This phenomenon involves the rapid and accurate counting
of the number of items when there is a small number of them. Such counting is slow and prone
to errors when the number of items exceeds four or five. Trick and Pylyshyn (1994) explain this
phenomenon by proposing that when the number of items is 4–5 or less, counting them

Figure 6. Pairwise comparison of average tracking and ID accuracy across different number of
targets. ‘n’ denotes the number of targets. Error bars denote 1 SEM. Comparisons marked ‘ns’ are
statistically insignificant, those marked ‘*’ have p < 0.05, ‘**’ have p < 0.01, ‘***’ have p <
0.001, ‘****’ have p < 0.0001.

Figure 5. Tracking and IDaccuracyof participantswith increasingnumberof targets in Experiment 1.
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involves merely counting the number of active indexes assigned pre-attentively and automat-
ically. However, when the number of items exceeds 4–5, then indexes need to be reassigned,
and participants need to keep track of which items have been already counted. This process is
slow and prone to errors. Intriligator and Cavanagh (2001) have noted that there are certain
specific conditions, aka conditions of attentional individuation, in which the objects can cap-
ture the FINSTs even when the number of objects is 4 or less. In particular, when the objects
are close to each other, participants can resolve them visually but not select them individually
using attention. We suspect that these same conditions are the conditions that allow FINSTs to
remain bound to their referents.

The experiments in Pylyshyn (2004) allowed objects to overlap, but they also provided
T-junction cues (Figure 7) corresponding to the object overlaps. Viswanathan and Mingolla
(2002) have indicated that the provision of depth cues such as T-junctions for overlapping
objects does not deteriorate tracking accuracy significantly. However, it is unclear if such cues
also prevent the disruption of subitizing discussed above (Intriligator & Cavanagh, 2001).
Pylyshyn (2004) acknowledges this for the posthoc analysis of experiment 4.

Thus, to find out if it is rather the case that the worse ID accuracy in the cases when number
of targets was 2, 3, or 4 was a result of FINST reassignments enabled by the close encounters of
objects, we report a second experiment that was specifically designed to keep the objects sep-
arate from each other while also maximizing the possibility of ID errors.

EXPERIMENT 2

The second experiment consisted of two tasks designed to obtain tracking-ID accuracy disso-
ciation without violating the conditions for attentional individuation discussed above. In the
first task, we asked participants to choose a speed limit for the objects at which they were
barely able to track them. We used these per-participant speed limits in the second task to
choose trials specifically designed to confuse identities. These trials were based on novel
motion dynamics based on the magician’s shell game. In all the trials, objects always remained
at a minimum visual-angle separation of 4 degrees from each other. The motivation for

Figure 7. Viswanathan and Mingolla (2002) provide empirical evidence that the absence of
T-junction cues (left) corresponding to the overlap of two objects deteriorates tracking accuracy
in an MOT task. On the other hand, the presence of such cues (right) does not significantly reduce
accuracy.

Table 2. Pairwise comparison of average tracking and ID accuracy across different number of targets
using Bayes’ Factor. The null hypothesis is that both the accuracies are equal; the alternate hypothesis
is that both are different. The Bayes’ Factor expresses the support for the alternate against the null—a
high value indicates greater support for the alternate.

Number of Targets 1 2 3 4 5 6 7 8

Bayes’ Factor NA 0.61 17.7 173 91.6 9.2 × 103 1.5 × 105 3.7 × 105
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choosing this separation has been elaborated in the Materials section below, while the motion
dynamics are elaborated in the discussion of Task 2 under the section on Procedure.

By preventing objects from approaching each other, we intended to eliminate the possibility of
tracking errors arising from index reassignments. In this case, an indexing-based account would
predict that the participants will not make ID errors in the second task. Contrapositively, ID errors
on the second task would raise concerns for the indexing-based account. Explaining ID errors
would necessitate positing that indexes are corruptible or require a non-indexing based account
of MOT—some non-indexing based account, even if not the one we propose in this paper.

Participants

12 participants (7 men, 5 women) participated in the experiment. All had normal or corrected
to normal vision, and none were colorblind. An IRB approved the protocol for the experiment.

Materials

For the experiment, the visually identical objects were small circles with a diameter of 30 pixels.
The participants sat about 40 cm from a full HD display with a diagonal of 21-inch length.
Thus, each object subtended an angle of 1° at the retina. The objects were restricted to move in
a 1080 × 720 pixels square area, which subtended an angle of 37.4° × 25° at the retina.

Our decision to use the minimum object separation of 4 degrees is based on the second
experiment in Intriligator and Cavanagh (2001). Preventing index reassignments requires that
the minimum distance between the objects be greater than the attentional resolution. Intrili-
gator and Cavanagh (2001) report a 75% accuracy in the stepping task corresponded to an
attentional resolution of (i) 3 arc min at the fovea (ii) 2° at an eccentricity of 15°. Attentional
resolution corresponding to an eccentricity of 19° would be ideal for our task; however, in its
absence, we use the attentional resolution corresponding to 15° eccentricity.

Note also that we are interested in near-100% accuracy rather than merely 75%. From the
Figure 11 of Intriligator and Cavanagh (2001), one may note that halving the density in the
stepping task at 15° eccentricity would correspond to an accuracy over 90%. This halving
would correspond to an attentional resolution of 4°. A similar separation has also been used
in Alvarez and Franconeri (2007) who report a minimum separation of 4° for a display
30° × 24°) and a tracking accuracy of 94%. Participants were asked to fixate on a central cross,
but they were told they can move their eyes if it helps them with the task. Thus, we expect the
separation of 4° to support attentional resolution and preventing index reassignments.

Procedure

Both tasks employed trials, each of which had 2, 3, or 4 targets. Each trial of both tasks has a
target designation phase, during which the targets were visually distinct (green) from the distrac-
tors (red). Following this was the tracking phase, during which all the objects were visually iden-
tical (white) and moved about on the display. Once all the objects stopped moving, the response
phase began in which the participant had to indicate their response, which depended on the
task and has been elaborated below. In all the trials, all pairs of objects were separated by 120
pixels on the display, translating to about 4 degrees of visual angle in the periphery.

Task 1: Maximum Speed for Error-Free Tracking. The first task was a calibration task intended to
find the maximum speeds at which the participants could track objects under the circumstances
of the experiment. It employed three blocks, each differing from the other in terms of the number
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of targets. The sequence of blocks was counterbalanced across the participants. This meant that
if one participant performed calibration in the order of blocks containing 2 targets, 3 targets, 4
targets, then another participant would perform the calibration in the order containing 4 targets,
2 targets, 3 targets, and so forth for the other permutations of the sequence [2, 3, 4].

In this task, there were 8 objects, and 2, 3, or 4 targets. The object motion dynamics
followed the Ornstein-Uhlenbeck dynamics with the restriction that any two objects will
always be at least 120 pixels aka 4° away from each other. The participants were told that
in this task, they had to identify the maximum speed at which they can perfectly track all
the targets. They were asked to use the up and down arrow keys of the keyboard to adjust
the objects’ speeds.

Pressing the ‘up’ arrow key once increased σ for the ongoing trial by 0.5 up to a maximum
of σmax = 6.0, and ‘down’ arrow key decreased σ by 0.5 down to a minimum value of
σmin = 0.5. At the start of the trial, σ was initialized to σ0 = 1.0.

If the participant was successful in identifying all the targets in the current trial Twith σ = σT,
σT+1 for the subsequent trial T + 1 was randomly set to either the same σT as the current trial, or
σT + 0.5, or σT − 0.5, all three with equal probability of 1/3 each, upper bounded by σmax = 6.0
and lower bounded by σmin = 0.5. On the other hand, if a participant was unsuccessful in
identifying all the targets, σ T+1 was reset to σ0 = 1.0.

For each block, calibration was said to be successful if the participant correctly identified
all the targets for 5 consecutive trials, and the σ value across these 5 trials varied by a maxi-
mum of 0.5. Once this condition was met, the participant was informed that calibration for that
particular target number was successful, and the next block was initiated. Once all the blocks
were completed, the experiment moved on to the next task.

Task 2: ID and Tracking Error Dissociation. Task 1 ensured that for each case involving the num-
ber of targets as 2, 3, or 4, the speed chosen was such that participants could still track the
objects perfectly and, thus, avoid tracking errors except perhaps by attentional lapses. Task 2
differed from Task 1 since Task 2 required the same participants to keep track of the target
labels. As in Pylyshyn (2004), these labels were shown alongside the targets during the
target-designation phase, while no such labels were present during the tracking phase. In
the response phase, participants had to click on the target and indicate its label using the
number keys.

Accordingly, participants were asked to keep track of which target is which to indicate the
target labels at the end of the trial. There were 15 practice trials, with 5 trials for each cases
involving the number of targets as 2, 3, or 4. Participants received feedback for these practice
trials indicating correct and incorrect responses. Following the practice trials, there were 30
main trials, with 10 trials for each case involving the number of targets as 2, 3, or 4. No feed-
back was provided for the main trials. The order of the trials in each of the practice and main
blocks was randomized.

To discuss the motion dynamics of the trials, we wish to draw the readers’ attention to the
shell game played by magicians. This game involves a pea or a small ball being placed under
one of the three identical shells placed in a row. The shells are then exchanged rapidly and the
participants may lose track of the shell under which the pea was placed originally. A magician
may use tricks other than rapid motion to violate participants’ expectations of which shell con-
tains the pea. However, we propose that rapid motion alone is sufficient for the participants’ to
lose track of the shell under which the pea was placed originally. Because the shells are visu-
ally identical, the only way in which participants can keep track of the original shell is by
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maintaining its individuality. Following the Visual Indexing Theory based explanation of track-
ing, the pointer or index can easily follow the original shell and help the participant maintain
its individuality. However, we propose that this is not the case, and maintaining the individ-
uality of the original shell even as its location changes requires effort.

In our experiment, visually identical circles replace the shells in the magicians’ game. The
distinction between the shell containing the pea vs. those not containing the pea is replaced by
a unique label given to each target. Then, the individuality of the different targets is maintained
by the correspondence updates as discussed in the section on ‘Identity maintenance without
indexes’. The resulting motion dynamics are demonstrated in Figure 88.

Before the experiment, we generated trials for task 2 for each speed the calibration task
could have yielded. These trials were subject to three constraints: (i) the objects followed
motion dynamics similar to a magician’s shell game, (ii) no objects ever came closer than
120 pixels aka 4 degrees of visual angle in the experimental settings, (iii) our simple heuristic
employed for ID tracking performed with less than 100% ID accuracy.

For the number of targets equal to 2, we generated trials for speeds ranging from 0.5 pixels
per frame to 18 pixels per frame. For the number of targets equal to 3, the speeds ranged from
0.5 pixels per frame to 11 pixels per frame. For the number of targets equal to 4, the speeds
ranged from 0.5 pixels per frame to 7 pixels per frame. Generating trials for higher speeds
when the number of targets equaled 3 or 4 (and the number of objects equaled 4 or 5 respec-
tively) was computationally expensive, and so was avoided.

For number of targets equal to 3 and 4, it was computationally expensive to come up with
trials following the magician’s shell game dynamics that also satisfied the other two con-
straints; thus, we had to restrict the upper limit of the speeds in these cases to 11 and 7 pixels
per frame respectively. In addition, the same computational constraints also forced us to limit
the number of objects to no more than one plus the number of targets.

Thus, while the previous task had 8 objects, this task had trials containing (2 targets, 3
objects), (3 targets, 4 objects), or (4 targets, 5 objects). Each trial had 1 distractor to further rule
out trials containing ID errors resulting from tracking errors due to attentional lapses.

8 See https://www.youtube.com/watch?v=vS0OsvXbrlg for the dynamic stimulus.

Figure 8. The figure illustrates the sample paths (dotted lines) of two objects (filled black circles) fol-
lowing motion dynamics similar to a magician’s shell game. (See the description of Task 2 under the
section on Procedure of Experiment 2.) The objects were constrained to move along the edges of the
circles, so that their spatial order changed rapidly. Even amongst these, only those computer generated
trials were selected in which the objects always stayed at least at a distance of 120 pixels (4 degrees)
from each other. With a rapidly changing spatial order, the ID maintenance mechanism as suggested in
the text would have a hard time keeping a track of IDs and would tend to make errors.
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Results

We excluded trials in which the participant made tracking errors, assuming they resulted from
attentional lapses. Out of 120 trials for each of the three cases (10 trials per participant), this
resulted in the removal of

• 0 trials for the case of number of targets equal to 2.
• 3 trials (1 practice, 2 main) for the case of number of targets equal to 3.
• 12 trials (2 practice, 10 main) for the case of number of targets equal to 4.

On the remaining trials that contained no tracking errors, we conducted a Bayesian t-test
using the BayesFactor library (Morey et al., 2015) for each case involving the number of targets
2, 3, or 4. The mean error rates of the participants across the practice and main trials, along
with the Bayes Factor for each case are indicated in the Table 3. Bayes factor over 10 indicates
that the data supports the hypothesis that ID errors are significantly different from zero, con-
sistent with tracking not reliant on incorruptible indexes. In contrast, Bayes Factor below 0.1
indicates that the data supports the hypothesis that ID errors is not significantly different from
zero, consistent with tracking based on incorruptible indexes. Anything in between indicates
an ambiguous result. With these thresholds, we note that there are statistically significant ID
errors for the number of targets equaling 3 or 4 even without tracking errors.

Discussion

In this second experiment, we attempted to prevent index reassignments to ensure that ID
errors do not take place due to index reassignments. This was enabled by restricting the sep-
aration of objects to at least 4 degrees of visual angle even at the 19 degrees of eccentricity that
our experiment required. We also eliminated trials with tracking errors in expectation that they
were caused due to attentional lapses. In this case, non-significant tracking-ID accuracy dis-
parity would lend support to the indexing-based account of tracking. Non-significant results
would also explain the tracking-ID accuracy disparities in Pylyshyn (2004)—the disparities
resulted from index reassignments due to the close approach of objects as suggested by their
post-hoc analysis.

With a Bayes Factor threshold of 10, we obtained statistically significant tracking-ID accu-
racy disparity for the case of three and four targets (Table 3), the latter case of four targets being
consistent with results from Pylyshyn (2004) and our Experiment 1. These results support the
view that multiple object tracking in humans may not require pre-attentive indexing.

However, it is important to emphasize that these results cannot be used as definitive evi-
dence for this position. While a separation of 4 degrees is necessary to enable attentional res-
olution, it may not be sufficient to prevent FINSTs from losing their referents. Also, as Pylyshyn
(2004) observe, the tracking-ID discrepancy is theoretically interesting only if we assume that
discrete references are cognitively available outside the tracking task. It is certainly

Table 3. Mean ID error rates of the participants across the practice and main blocks for each case of number of targets equal to 2, 3, and 4.
The Bayes factor corresponding to the support for the hypothesis that ID errors are non-zero against the hypothesis that the ID errors are zero
are shown with the mean error rates in brackets next to them.

Block \ Number of Targets (Bayes Factor, BF10) 2 3 4

Practice 0.44 (1.67%) 12.6 (15.8%) 147.3 (23.8%)

Main 1.32 (5.83%) 142.0 (15.4%) 20.7 (20.0%)

OPEN MIND: Discoveries in Cognitive Science 14

MOT Without Indexes Ayare and Srivastava

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00128/2358160/opm
i_a_00128.pdf by guest on 08 April 2024



conceivable for FINSTs to only operate inside a tracking mechanism, while being inaccessible
elsewhere.

COMPUTATIONAL MODELING

MOTUAF-Unitary: Multiple Object Tracking as Updates of Attended Features, Augmented by

Unitary Cognition

So far, we have provided evidence supporting that MOT takes place without indexes and out-
lined how this might happen. In this section, we detail a computational model for this task and
explore the implications of the conditions under which it can achieve patterns of tracking per-
formance that have been found in the literature.

To do this, we need to be more concrete about the structure of the maps we have so far only
identified conceptually. We assume that both the maps may be modeled by a two-dimensional
rectangular grid of cells each indexed by Cartesian coordinates. Note that the assumption of
Cartesian indexing need not be true; we are open to testing our model using a circular grid
involving polar coordinates or any other more neuropsychologically plausible representations.

Next, we provide a formal treatment of the two maps, a unitary buffer, and their interac-
tions. For the rest of this paper, let t denote an arbitrary point of time, and at that time point, let

1. matrix Ot denote the grid of objects containing their actual locations
2. matrix At denote the grid of attended locations
3. Ut = [ut,v t] denote a capacity-two sequence of locations corresponding to the unitary

process

The notion of unitary processing will be made clear in the upcoming section.

The Involvement of Velocities. While trying to reproduce previous results on patterns of tracking
performance, we noted that relying solely on the information in a retinotopic map of instan-
taneous locations of objects results in tracking performance worse than humans in a particular
case. This case arose when we tried to obtain the tracking performance pattern corresponding
to object speed vs. the number of targets from Alvarez and Franconeri (2007) and Srivastava
and Vul (2016) (Figure 9). In Alvarez and Franconeri (2007), the objects were constrained to
not come closer than 4 degrees of visual angle, but no such constraints were imposed in
Srivastava and Vul (2016); the objects were free to cross each other’s paths in Srivastava
and Vul (2016). The speed limit corresponding to a particular accuracy of the model was
almost the same as humans for Alvarez and Franconeri (2007) but was only half as humans
in Srivastava and Vul (2016). The poor speed limit of the model held even when a single target
was tracked. Thus, the disparity could not be attributed to a better update scheme9. This called
for the use of additional information for tracking.

Note that the need for this additional information is not changed by changing the structure
of the retinotopic maps. Indeed, changing the structure of the map of object locations and
attended locations can change the structure of the required additional information. However,
additional information—something more than the instantaneous locations—will still be

9 By default, our attention updates followed a round-robin scheme in the case of multiple targets. A better
scheme would involve updating the attended locations on a priority basis, for example, a more crowded loca-
tion might get more priority for update. The notion of an update scheme is better understood through the dis-
cussion in the section on MOTUAF Attention Updates.
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required. We further note that the performance limitation persists despite using a grid resolu-
tion equal to the display resolution.

A natural candidate for this additional information is (locally computed) velocity informa-
tion. Holcombe (2022) has outlined two possibilities for using such information. One possibil-
ity is to use velocity to estimate locations; however, several studies (Franconeri et al., 2012;
Keane & Pylyshyn, 2006) have noted the use of velocity information to estimate locations as
psychologically implausible.

Keane and Pylyshyn (2006) test participants’ tracking ability in the presence of occlusion.
The targets disappear briefly and reappear after a short interval of time. They report that
participants track better when the post-occlusion location of the targets is closer to their
pre-occlusion locations, than when the post-occlusion locations are closer to their motion-
extrapolated pre-occlusion locations. Franconeri et al. (2012) report similar results.

However, all the experiments in Franconeri et al. (2012) and Keane and Pylyshyn (2006)
used 4 targets and 4 distractors. Howe and Holcombe (2012) report that predictable velocity
information led to better tracking when there were two targets but not when there were four
targets. Thus, the use of velocity information to estimate locations remains plausible in MOT.

Holcombe (2023) has suggested that human performance in multiple object tracking may
be a result of two systems working together—(i) velocity-using unitary cognition, that is, a
low-capacity process referred to as System 2 in the broader literature, along with (ii) a
nearest-neighbour-heuristic based high-capacity low-level process. The use of velocity infor-
mation for position estimation may then be the result of the involvement of System 2. With the
involvement of both the systems, it becomes natural to explain why velocity information is
useful when there are few targets but not when they are more. Our simulations are in agree-
ment that incorporating both systems is sufficient for obtaining the patterns in tracking perfor-
mance found in the literature.

Figure 9. Left: The plots compare the object speeds vs. number of targets of the model against
empirical data from Alvarez and Franconeri (2007) and Srivastava and Vul (2016), respectively
AF2007 and SV2016, for 94% and 80% accuracy. The model uses round-robin updates of attended
locations with just the retinotopic object map and attention map without any unitary processing.
Right: MOTUAF-simple of the same model as the one used on the left. MOTUAF-fa is a model
variant with updates of attended locations, always prioritizing the most crowded locations (see
the section on Unitary Processing). The rest of the model is the same as the one used for the left
plot, with just the retinotopic object map and attention map without the unitary processing. A better
update sequence can increase tracking performance for cases when the number of targets exceeds
1. In this case, we obtained no performance advantage even for those cases. We wish to bring the
reader’s attention to the performance disparity between the human and model performance in the
single target case that calls for the use of information other than the instantaneous object locations
provided through the retinotopic object location map. In both cases here, the floc of the model
equaled the frame-rate of the display, with both being equal to 30 Hz.
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The Object Location Map and the Attended Location Map. Ot
ij ¼ 0 indicates the absence of any

object in the grid cell at row i and column j, and Ot
ij ¼ n indicates n objects in that grid cell.

Similarly, At
ij ¼ 0 indicates that the grid cell at row i and column j is not being attended to. Any

larger value indicates that the location is being attended to with one or more objects (equal to

At
ij ) at that location available for reporting.

At the start of the trial, at time t0, attended locations will certainly be identical to the loca-

tions of the targets. That is, for each location where At0
ij is non-zero, O

t0
ij is also non-zero. As the

trial progresses, the attended locations may or may not correspond to the exact locations of the

objects. At an arbitrary time t during the trial, some At
ij may be non-zero even though Ot

ij is

zero. This discrepancy between Ot
ij and At

ij is the main difference with respect to the FINST

theory, which considers locations as being accessed through the indexed objects, thus disal-
lowing attention to locations without objects. As suggested earlier while describing the outline,
the idea that the position representations of targets are not always identical to targets is com-
patible with the findings in Howard and Holcombe (2008) and Howard et al. (2011). In light of
the findings suggesting object-based attention, it may be noted that the lag between the posi-
tion representations and the actual positions of the targets has been reported to be around
10–130 ms (Holcombe & Chen, 2013; Howard & Holcombe, 2008). Thus, even though
attention may be object-based even in MOT, we suggest that a certain duration is required
for the proto-objects to capture attention. However, the exact nature of this duration will
require additional experiments.

Thus, in this framework, multiple object tracking consists of the maintenance of attended
features (in our case, locations) so that they keep corresponding to objects as far as possible.
Such maintenance involves an update of attended features (locations) that no longer corre-
spond to any objects to other nearby features (locations) that correspond to some object.
The update from t to t + 1 can be understood as the maintenance of the following relation
between the entries in At and At+1:

At
ij ¼ 1⇒

Atþ1
ij ¼ 1

Atþ1
unitary-cognition-estimate i;jð Þ ¼ 1

Atþ1
nearest-object-location i;jð Þ ¼ 1

if Ot ’
ij ≠ 0

if Otþ1
ij ¼ 0 and utþ1 ¼ i; jð Þ

if Otþ1
ij ¼ 0 and utþ1 ≠ i; jð Þ

8>><
>>: (1)

Here, the condition ut+1 = (i, j ) is true if the unitary process is processing the location. The
other entries in At+1 are set to 0. The above update assumes binary values of the entries in At

for simplicity, but the model allows larger values of both O and A grid cells, which arise when
objects overlap within grid cells.

This update is assumed to be an expensive, constrained resource process, which we char-
acterize by a frequency of location updates floc. This frequency denotes the total number of
updates across all attended locations happening every second, so that greater the number of
attended locations, less frequent are the updates to each location and, thus, worse is the main-
tenance. In the section on “MOTUAF Attention Updates”, we explain how more attentional
allocation leads to greater spatial precision as reported and utilized by Alvarez and Franconeri
(2007) and Srivastava and Vul (2016).

Most importantly, unlike FINSTs (Pylyshyn, 1989, 2009) and MOT models based on FINSTs
that enable individuating objects without considering their visual features or even their loca-
tions, all attended locations in our model - except the one processed by the unitary system -
are indistinguishable from each other except by their locations themselves.
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Further, following Alvarez and Franconeri (2007), we assume that the total number of
attended locations can vary within an individual based on task requirements. We expect an
upper limit to the number of attended locations; it is certainly above 4, given the evidence
illustrating that subjects can track as many as 8 objects moving at low velocities (Alvarez &
Franconeri, 2007). We speculate that the limit should be related to one’s working memory
capacity but leave the exact number open as a question for future work to address.

Note that there are two kinds of updates in the model. The first kind involves updates of the
unitary processing, including deciding which attended object should be processed using the
unitary system. The second kind involves the updates to attended locations, which correspond
to the actual MOT task. We discuss each of these in the following two subsections.

Unitary Processing. In order to use velocity information to estimate the location of an object,
we need information about its location at at least two points in time. Following Holcombe
(2022, 2023), we restrict our model to do this only for a single object at any time step. So,
whenever a different object needs to be processed by the unitary system, the unitary proces-
sing’s existing information will be discarded. Then, the location information corresponding to
the new object will be noted.

We propose that unitary processing is utilized for targets in the greatest danger of being
confused with distractors. This proposal is consistent with the counter-intuitive finding in
Srivastava and Vul (2016) that crowded locations are tracked better.

For purposes of notation, let the subscripts denote one particular location on the retinotopic
map, and let the superscripts denote the particular instance of time for which these are being

considered. According to this notation, at1, a
t
2, ..., a

t
n will be the non-zero grids in At at time

point t, with n being the number of targets.

Then, for the attended location ati , the confusion is quantified by a confusion-ratio

given by:

cti ¼
dist ati ; nearest-object-location

� ati ; 1
� �� �

dist ati ; nearest-object-location
� ati ; 2
� �� �

( )ce

(2)

Here, nearest-object-location* is a slight variant over the nearest-object-location mentioned
previously.

• nearest-object-location takes in only the location l from where to start the search and
thus returns the location of the object l0 closest to that location l

• nearest-object-location* takes in the location l as well as a number k and returns the
location of the kth closest object nearest to the location l

Thus, for ce > 0, the confusion-ratio expresses that the confusion will be the greatest
when the distance between the second closest object and the attended location is as
close to the distance between the first closest object and the same attended location.
In other words, a high confusion-ratio indicates that the second closest object might
come closer to the attended location than the (first) closest object. Thus, the two may
be confused. Note that the confusion ratio is computable using information locally avail-
able for each attended location.
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The updates of attended locations then proceed in a manner determined probabilistically
by the confusion ratios. This probability is given by

pt
i ¼

ctiPn
j¼1c

t
j

(3)

Note that the greater the value of ce in Equation 2, the greater the probability that a more
confusable location will be chosen for update compared to a less confusable location. In par-
ticular, when ce → ∞, the probability of choosing the most confusable location will be 1. In the
section on ’Reproducing earlier MOT results’, we fix ce with a large value, indicating that only
the most confusable locations are always chosen.

We also impose the additional restriction that once the unitary system has chosen an
attended location for processing, it cannot process another attended location for about 100
to 300 ms. In other words, we fix the frequency fu at which the unitary system can choose
which attended location to process at about 3–10 Hz. Our simulations suggested that this
interacts with the rate at which object velocities change in the environment. This effect is con-
sistent with the results in Howe and Holcombe (2012) that tracking accuracy is better in the
n = 2 targets case when velocities are predictable. They do not find the benefit of predictable
velocities for tracking accuracy in the n = 4 targets case. Unfortunately, n = 2 and n = 4 are the
only two cases they considered. Furthermore, they do not vary the predictability of velocities.
Our model predicts that the longer the velocity information of a particular target is usable, the
more beneficial is the unitary processing. Suppose the velocity information changes faster than
the rate at which unitary processing can choose which attended location to process. In that
case, the velocity information will not be helpful.

The unitary processing allows the computation of velocity through the positions of the
objects at two points in time. This information is then used to estimate the next location when-
ever the location being updated is the same as the location that is a part of the unitary pro-
cessing. A attended location (i, j ) is part of the unitary processing if ut+1 = (i, j ) (see Equation 1).
In this case, the nearest-object-location search begins from that location. For other attended
locations that are not part of the unitary processing, only a simple nearest-object-location is
used starting from the attended location itself, without relying on any velocity information. The
nearest-object-location algorithm is elaborated in the next section.

Overall, with the unitary processing, whenever the location that is being updated is the
same as the location that is a part of the unitary processing (indicated by the condition
ut+1 = (i, j ) in Equation 1), then because the unitary processing allows the computation
of velocity through the positions of the objects at two time points, this information is then
used to estimate the next location and the nearest-object-location search begins from that
location. For other attended locations which are not a part of the unitary processing, only a
simple nearest-object-location is used starting at that attended location itself without rely-
ing on any velocity information. This process is elaborated in the next section.

MOTUAF Attention Updates. We assume sequential updates for each of the attended locations
in a manner determined by their crowding. According to the discussion in the previous sec-
tion, this means that the most crowded location gets the update. This update may or may not
happen due to the unitary process itself.

Recall that Pylyshyn and Storm (1988) had shown that a serial tracking algorithm based on a
spotlight of attention moving between the objects at finite speeds could not account for the track-
ing accuracy on the task of tracking multiple identical objects. But, they did not rule out the case of

OPEN MIND: Discoveries in Cognitive Science 19

MOT Without Indexes Ayare and Srivastava

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00128/2358160/opm
i_a_00128.pdf by guest on 08 April 2024



quantal updates. Egeth and Yantis (1997) provides evidence that the movement of attention is
quantal rather than analog, as well as that the RTs involved in the supposedly-parallel processing
of multiple stimuli are additive rather than subadditive (and therefore the supposition of parallel
processing is unwarranted). Serial switching theory also naturally accounts for variation in tempo-
ral resolution of tracking with the number of targets (Holcombe & Chen, 2013), as well as the
increase in temporal lags in tracking with the number of targets (Howard & Holcombe, 2008).

Thus, in every time step, only a single attended location is updated. So, the greater the
number of locations that need to be attended, the less frequent the updates to each location;
thereby, the tracking accuracy with an increasing number of targets is worse.

1. We note that an attended location ati corresponds to the exact location of some object
only immediately after an update at time t caused it to be non-zero.

2. The frequency of updates of the attended locations is denoted by the parameter floc.
Suppose the next update corresponding to at

0
i ¼ ati happens at time t0, so that at

0þ1
i

once again corresponds to some object.
3. At time t0, the attended location at

0
i ¼ ati may no longer correspond to an object, since

during the time from t to t0, the object would have moved from the location ati to a new
location l. While updating at

0
i ¼ ati to at

0þ1
i at time t0,

(a) Suppose at
0
i is different from the location in the unitary processing; that is, suppose

at
0
i ≠ ut 0 . Then the model finds the object nearest to at

0
i . To do so, it looks for a

location occupied by some object with increasing distance from at
0
i ; thus, it avoids

considering all the objects on display to find the nearest object. This local search
is also characterized by another parameter called the nearest object bound nob
since it is unreasonable to assume that recovering the object could work if they
have moved too far away from the attended locations. The search is aborted, and
the location is no longer stored if no object is found within a distance of nob from
at

0
i .

(b) On the other hand, if at
0
i ¼ ut 0 , then instead of finding the nearest object in the

vicinity of at
0
i , the model finds the nearest object in the vicinity of at

0
i þ ut 0 − vt 0

� �
strictly following the method described in the previous sub-step.

4. Suppose this new location where some object is present is l 0. Then, the update is per-
formed so that at

0þ1
i ¼ l 0 holds. In general, l 0 may not be the same as l. Suppose the

object has moved predictably (unitary system processing) or has not moved much
(non-unitary system processing). In that case, l 0 will more likely be the same as l,
and in these cases the model will not lose track of the target; but otherwise, the loca-
tions l and l 0 will be different and correspond to different objects. According to our
model then, this is how tracking errors occur.

Reproducing Earlier MOT Results

As Srivastava and Vul (2016) point out, explaining the degradation of accuracy with an
increase in the number of targets is the stiffest challenge for computational MOT models.
In this section, we show how MOTUAF successfully reproduces this trend across in silico
reproductions of four different experiments, PS1988 (Pylyshyn & Storm, 1988), AF2007
(Alvarez & Franconeri, 2007), FR2008 (Franconeri et al., 2008) and SV2016 (Srivastava &
Vul, 2016).
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Methods. In our simulations, the size of the retinotopic grid map of the model equals the size
of the MOT window on the display (in pixels). Indeed, the amount of information is limited by
the MOT window—in terms of its resolution and the refresh rate; any model based on a reti-
notopic grid cannot use a resolution exceeding that of the display.

We use two kinds of dynamics depending on the characteristics of the experiments: con-
stant speed dynamics and Ornstein-Uhlenbeck dynamics. For each of the two dynamics, we
also outline the relationship between the parameters usually reported in the MOT literature
and those required for simulating an equivalent environment in a computer program. We
achieve this by equating the average duration an object takes to travel from one end of the
MOT window to another in the experimental setting and our simulation. In both cases, the
only information the model receives is a grid map indicating the instantaneous locations of
the objects. It does not have any direct access to the velocity information or the correspon-
dence information.

Constant Speed Dynamics. The first kind of dynamic is based on Alvarez and Franconeri (2007)
wherein objects move at constant speeds, repelling each other if they come within a certain
minimum distance of each other or the walls. Similar kinds of dynamics have been stated in
Franconeri et al. (2008). In particular, to identify the dynamics of a particular object for the
next time step, we identify all the objects and walls that are within a certain minimum distance
from that object. For each such wall or object, we perform a component-wise (x-component
and y-component) sum of the inverse-square distances to determine the net direction of repul-
sion. This net direction of repulsion forms the direction of the object at the next time step. That
is, for an object at (xi,yi) moving at speed σ in direction θ (angle with respect to the x-axis), its
new direction of motion is given by

rxnet ¼
X
j≠i

xi − xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
� �2 þ yi − yj

� �2q

rynet ¼
X
j≠i

yi − yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
� �2 þ yi − yj

� �2q

θ0 ¼ arctan rynet ; rxnetð Þ

where j varies over all the objects and walls within a certain minimum distance of the object at
(xi,yi). For walls, we consider the perpendicular distance from the wall.

By equating the time it takes for an object to cross from one side of the display to another in
the experiment vs. the simulation, we obtain

θ

d
¼ D

ησ D
s

Here,

• θ degrees is the angle subtended by the MOT window
• d degrees per second is the average speed of the object
• D is the actual width of the grid on the display
• η is the number of simulation updates to be carried out per second
• σ is the speed of the object in pixels per second in the simulation
• s is the side of the grid (in pixels)
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Solving for σ, one obtains

σ ¼ s ⋅ d
η ⋅ θ

(4)

Ornstein-Uhlenbeck Dynamics. The second kind of dynamics is from Srivastava and Vul
(2016) and Vul et al. (2009). In this, objects move according to Ornstein-Uhlenbeck dynamics
with

xt ¼ xt−1 þ vt

vt ¼ λvt−1 − kxt−1 þwt

wt ∼N 0;σð Þ

The y components are given similarly. Following the same notation as Vul et al. (2009), we set
the spring constant parameter to k = 0.0005 and the inertia parameter λ = 0.9 unless stated
otherwise. The motion dynamics described in Pylyshyn and Storm (1988) involves (i) a change
in speed and direction of the objects every few hundred milliseconds (ii) a restriction on
objects to always stay a certain minimum distance away from each other. We achieve similar
dynamics by relying on the Ornstein-Uhlenbeck dynamics with an additional constraint. This
constraint lets objects change velocities as required by the Ornstein-Uhlenbeck dynamics.
However, their positions change only if the objects remain a certain minimum distance away
from each other after the change.

The relation between the empirical and simulation parameters is similar to the one obtained
for constant speed dynamics, but with a factor of 1.8 thrown in. We noted that for k = 0.0005
and λ = 0.9, one update following unconstrained Ornstein-Uhlenbeck dynamics covered an
average of 1.8σ pixels. Thus, we have10:

θ

d
¼ D

1:8ησ D
s

Solving for σ, one obtains

σ ¼ 0:555� s ⋅ d
η ⋅ θ

(5)

Results. For purposes of tracking, floc, nob, ce, and fu constitute the free parameters of the
model. The free parameters of the environment and simulations include the grid size, σ,
MOT simulation update rate, and the total number of simulation updates carried out (or equiv-
alently, the number of time steps).

Figure 10 summarizes MOTUAF’s behavior vis-a-vis data from all the four experiments we
evaluated. Table 4 enumerates the experiment-specific parameters and free parameter values
used to produce these results. MOTUAF, with only three free parameters, successfully repro-
duces the trends seen in all four experiments.

10 Note that the σ in the two dynamics mean slightly different things. In constant speed dynamics, σ is the
constant speed in pixels per second at which the object is moving. In contrast, in ornstein-uhlenbeck dynamics,
σ is the standard deviation of a gaussian that determines how much the speed changes in that time step.
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Errors vs. Number of Targets for a Particular Average Speed. Empirical research into multiple
object tracking began with Pylyshyn and Storm (1988). They asked participants to detect
flashes occurring on target objects and measured the error rates of this detection. A successful
detection of the flash indicated successful tracking, while a failed detection indicated an error
in tracking. In Figure 10 (left), we reproduce the pattern of percentage error rates for tracking
the number of targets varying from 1 to 5, as measured by Pylyshyn and Storm (1988). This
uses the Ornstein-Uhlenbeck dynamics with an additional constraint that objects never get
close to each other. The detailed experimental and simulation parameter values are given
in Table 4.

Figure 10. Reproducing previous results in Multiple Object Tracking. Left: Comparison of percentage errors with increasing number of targets
corresponding with a fixed average speed of MOTUAF plotted against data from Pylyshyn and Storm (1988). Center: Velocity threshold vs.
number of targets patterns for MOTUAF plotted against data from AF2007 (Alvarez & Franconeri, 2007) and NS2016 (Srivastava & Vul, 2016).
Right: Comparing our model against the human data in experiment 1 of Franconeri et al. (2008).

Table 4. MOTUAF simulation parameters corresponding to data from previous empirical results.

Parameters \ Paper PS1988 AF2007 SV2016 FR2008-small FR2008-large

Visual Angle of MOT Window 21.5° 30° × 24° 16° 20.5° × 9.1° 82° × 36.4°

–display resolution not given not given 720 × 720 175 × 078 700 × 310

–grid-size for MOTUAF 360 × 360 720 × 720 720 × 720 180 × 180 720 × 720

Retinal Speed 1.25–9.4°/s 0.1–16°/s not given in °/sec 5–25°/sec 20–100°/sec

Trial Duration 10 sec 5 sec 5 sec 6 sec 6 sec

Intervals at which velocities
or directions change

“few hundred ms” – – 0.3°/frame 0.3°/frame

Number of updates 25 300 150 540 540

Environment Kind Ornstein-Uhlenbeck constant-speed Ornstein-Uhlenbeck constant-speed constant-speed

Sigma for simulations 18 0.1–6.0 1.3–5.4 0.45–2.25 1.80–9.0

Minimum Object Distance 15 (0.75°) 80 (4°) 0 (0°) 24 (2.8°) 96 (11.3°)

MOTUAF Free Parameters

–fu 10 Hz 3 Hz 10 Hz 10 Hz 10 Hz

–ce ∞ ∞ ∞ ∞ ∞

–floc 28 Hz 30 Hz 30 Hz 17 Hz 16 Hz

–nob ∞ 24 60 ∞ ∞
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Object Speed Thresholds for a Particular Accuracy vs. Number of Targets. In Alvarez and Franconeri
(2007) and Srivastava and Vul (2016), the authors varied the speed of the objects to find the
maximum speed at which the tracking accuracy of the subjects reached a predetermined
threshold. This calibration was done for the number of targets varying from 1 to 8 in Alvarez
and Franconeri (2007) and 1 to 6 in Srivastava and Vul (2016). In their tasks, a target or a
distractor became visually distinctive with equal probability at the end of a trial. Subjects
had to indicate whether this visually distinctive object was a target or a distractor. The accu-
racy of these responses across many trials was dubbed as tracking accuracy. Our model
attempts to reproduce these patterns in Figure 10 (center). The model’s speed threshold is
close to humans for the data from Alvarez and Franconeri (2007), who always kept objects
a certain minimum distance away from each other. But, the model’s speed threshold could
not reach human performance for 2 or more targets for the data from Srivastava and
Vul (2016), who allowed objects to overlap. Investigating this discrepancy requires more
empirical work.

Tracking Accuracy vs. Object Speed in Scene-widths Per Second. One might expect that, when
object crowding is controlled, tracking capacities would depend on the objective speed of
the objects or at least on the angular speed of the objects at the retina. In contrast, Franconeri
et al. (2008) present an interesting finding that the tracking accuracies for the same object
speed on small and large displays are very similar when the object speed is measured in
scene-widths per second. An object speed of 1 scene width per second means that if the object
were allowed to move freely without changing direction, it would move from one end of the
MOT window to another once in 1 second. A speed of 1.25 scene widths means that the
object will cover 1.25 times the width of the MOT window in 1 second; a speed of 0.5 scene
widths means it will cover 0.5 times the width. The small display subtended an angle of
20.5° × 9.1° at the retina, while the large display subtended an angle of 82° × 36.4°.
Figure 10 (right) shows our model reproducing these patterns. Nevertheless, the minimum
distance between the objects scaled with the display size, and their findings are consistent
with the attentional resolution capacities measured by Intriligator and Cavanagh (2001).

Multiple Identity Tracking With MOTUAF

Given that at time t, the system only has access to the locations at1;…; a
t
n but not the locations at

other points of time, the information it has so far is insufficient to make conclusions about the
target IDs.

To keep track of IDs, we therefore propose that at time t, there also exists a separate

sequence qt
1;…; qt

n of IDs. One possible strategy to maintain such a sequence is to keep recit-

ing the sequence. To match objects to IDs, one can go over the attended objects in some spa-
tial sequence while reciting their IDs in that same sequence.

One particular sort order (but not the only one) could be to sort the locations in the non-
decreasing order of x-and-y coordinates. With this, at the start of the trial at time t0, the
sequence of attended locations is monotonic in their x-and-y coordinates, so that for m < n,

at0m ≡ xt0
m; y

t0
m

� �
and at0n ≡ xt0

n ; y
t0
n

� �
are such that (xt0

m < xt0
n ) or (x

t0
m ¼ xt0

n and yt0
m ≤ yt0

n ). Given this

order of at01 ;…; a
t0
n , the system now has the ID of the object at at0k in qt0

k for k 2 1, …, n, and it is

through this correspondence that the system can infer the IDs of the objects.

At the end of the trial at time te, the system again sorts the sequence of attended locations

ate1 ;…; a
te
n using the same sorting-rule that it had used at the start of the trial, in our particular
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example, this is non-decreasing order of x-and-y coordinates. It then assigns the ID qte
k to the

object that is at or nearest the location atek .

The strong assumption here is that the sequence of IDs is never updated. In the general
case, and as one’s intuition would suggest, it should be possible to update the ID sequence,
aka do a “correspondence update”, especially if the objects move sufficiently slowly. This
update can be characterized by an additional parameter for the model, which we call the fre-
quency of correspondence updates fcorr. The question of whether or not a correspondence
update takes place at any particular time step is relevant only if a location update has taken
place. So, as opposed to the frequency of location updates floc being an absolute frequency,
fcorr can be understood as a frequency relative to floc. Thus, 0 ≤ fcorr ≤ 1.

When fcorr = 1, that is, when correspondence updates occur whenever location updates
occur, MOTUAF (like FINST-based models) predicts ID accuracy being identical to tracking
accuracy across any trial duration (see Figure 11, right). Setting fcorr to less extreme values
produces a disparity between tracking and ID accuracy, as anticipated in the literature
(Pylyshyn, 2004). For example, fcorr = 0 reproduces the empirical results seen in Pylyshyn
(2004) (see Figure 11, center) very precisely (see Figure 11, left).

Model-based Analysis of Experiment 1

We minimized the mean-square error (MSE) between the tracking accuracy of humans and
MOTUAF for floc ranging from 6 to 45 Hz, and for nob varying from 20 to 60.

For lowest MSE (Figure 12, left), floc = 30 Hz, nob = 52, MSE = 2.0 × 10−4, r2 = 0.980.

Comparing the model’s ID accuracy with human ID accuracy (Figure 12, left-dotted), one
notes that fcorr = 0 results in the model’s ID accuracy being worse than the human ID accuracy
(MSE = 5.8 × 10−3, r2 = 0.975). Calculating the MSE scores between the model’s ID accuracy
and human ID accuracy for different fcorr yielded a lowest MSE for fcorr = 0.4 (MSE = 1.6 × 10−3,
r2 = 0.971) (Figure 12, left-solid).

However, for the particular correspondence-update heuristic we employed, even with
fcorr = 0.4, the human ID accuracy consistently exceeds the model’s ID accuracy when the
number of targets is at most four. Investigating the existence, characteristics, and the disruption
of the correspondence-update heuristic will require more work.

We also compare MOTUAF’s performance against MOMIT (Oksama & Hyönä, 2008), an
index-based model designed for tracking visually distinct objects; however, it can track visu-
ally identical objects by suppressing its corrective attention shift mechanism. Figure 12 (right)

Figure 11. Tracking and ID accuracy in an MOT task with 4 targets and 8 objects (4 targets, σ = 1.25) with increasing trial duration. Left:
Predictions from our modeling assuming fcorr = 0. Center: Replotted results from Pylyshyn (2004). Right: Predictions from a model based on
indexes aka fcorr = 1. Our model only captures the notion of an ID without distinguishing between Corners vs. Names.

OPEN MIND: Discoveries in Cognitive Science 25

MOT Without Indexes Ayare and Srivastava

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00128/2358160/opm
i_a_00128.pdf by guest on 08 April 2024



shows MOMIT’s fit to our data. Despite a still-reasonable (r2 = 0.877) fit for tracking accuracy,
we note that MOMIT is intrinsically predisposed to align ID accuracy with tracking accuracy
as with the fcorr = 1 case (see Figure 12, left-dashed).

Predictions and Limitations

The computational model of MOTUAF we discussed successfully replicated several empirical
results. However, it required certain assumptions, and these assumptions make testable pre-
dictions. In addition, some more phenomena are still left unexplained. Below, we discuss both
these issues.

Velocity-based Constraints. Howe and Holcombe (2012) presented a nuanced finding that
velocity information is used for tracking in the n = 2 targets case but not in the n = 4 targets
case. Our modeling work builds upon this and suggests the limits under which velocity infor-
mation can be used. This can be explored further. In particular, let fv be the frequency at which
velocity changes and f �v be the limiting frequency at which velocity information still benefits

tracking. Then, our model predicts that f �v should decrease with an increase in the number of

targets. This can be tested.

In trying to reproduce the results from Srivastava and Vul (2016) (Figure 10, center), even
though we were successful in achieving human-level performance in the single target case,
our model still falls short of human performance in cases involving more than a single target.
Moreover, the pattern of results (a linearly decreasing trend) is quite distinct from both the
model predictions as well as from the ones in Alvarez and Franconeri (2007) (a logarithmically
decreasing trend). Whether this is an experimental artifact, a result of better response strat-
egy11, a limitation of the model, or something else remains to be identified.

In light of the results in Franconeri et al. (2012), Howe and Holcombe (2012), and Keane
and Pylyshyn (2006) discussed in the section on “The involvement of velocities” while

11 A naive response strategy would assume that if a target gets confused with a distractor when they cross each
other, the participant will only track one of them. However, the participant can keep track of both of them, and
then at the end of the trial, if the query distractor is neither of them, then the participant can confidently answer
‘No’.

Figure 12. Left: Comparison of MOTUAF’s tracking and ID accuracy against human data after
fitting MOTUAF’s tracking accuracy to the human data, with differing assumptions about the ID
updates (i) ID updates taking place always whenever location updates take place (ii) ID updates
taking place some of the times (iii) no ID updates taking place ever as with the Center figure. Error
bars represent 1 SEM. Right: Comparison of MOMIT’s Tracking and ID accuracy against human
data for the lowest MSE run.
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describing the computational model MOTUAF, there indeed are strong constraints to the use
of velocity information in the case of multiple targets.

Temporal Constraints. Verstraten et al. (2000) noted a temporal limit of about 5–8 Hz on atten-
tional tracking. A similar limit of 7 Hz has been noted by Holcombe and Chen (2013) for the
single target case. However, our model makes no space for accounting for these. The limit
predicted by our model using floc is as high as 30 Hz.

Given the phi phenomena (Wertheimer, 1912), certainly, some visual processes occur at
this high a frequency. What, then, could explain how the 5–8 Hz frequencies arise?

One way to explain this could be to analyze how errors can arise in the tasks employed in
Holcombe and Chen (2013). In these tasks, tracking is achieved through attention, and thus,
targets are what one attends to; one notes that one would make an error if the distractor
appears too soon after the target. Suppose the distractor appears too soon after the target. In
that case, attention captures the distractor too. We propose that this unwarranted capture is the
cause of tracking errors. Specifically, an error occurs if the distractor appears within 1/f sec-
onds after the target, with the tracking limit being f Hz.

These results can be explained if tracking can be mechanized as follows: Targets are what
one attends to. Once a target has moved (changed its property), attention gets redeployed to
capture these changed features of the objects. These changed features serve as exogenous
cues for attentional deployment. According to our computational modeling work, floc corre-
sponds to this rate of attentional deployment, expected to be as high as 30 Hz. However,
alongside the deployment of attention to the new feature, attention also gets disengaged from
the previous feature. Suppose a proto-object with the not-yet-disengaged feature were to
appear before the attention is disengaged. In that case, that proto-object will likely be captured
by attention, leading to tracking errors. If, on the other hand, the proto-object appears after
attention has been disengaged, say, during the attentional blink, then there should not be
any tracking errors.

The attentional blink period has been suggested to last from 200 to 500 ms after the first
target (Shapiro et al., 1997). While tracking a single target, if a distractor appears at the target
location during the attentional blink, then tracking errors should not occur. In contrast, if the
distractor were to appear at the target location during lag-1 sparing, then a tracking error will
occur.

However, while this can explain the n = 1 target case, as suggested by Holcombe and Chen
(2013), investigating how these phenomena vary for multiple locations remains an open
question.

A Bimodal Distribution of Object Position Lags. Howard and Holcombe (2008) and Howard et al.
(2011) reported a dissociation between the reported locations of the objects and the actual
object locations, with the former lagging behind the latter. We have assumed the involvement
of a unitary system in tracking. The lag between the represented object locations (attended
location) and the actual object locations should be close to zero if the update of the attended
location took place via the unitary system. For the other attended locations, the lags should
increase with an increase in the number of targets. Thus, we expect a bimodal distribution of
lags: one set of lags close to zero, and another set of lags which increase with the increase in
the number of targets.

The Most Crowded Locations Are Tracked Better But the Second Most Crowded Locations

Are Not. Srivastava and Vul (2016) reported a counter-intuitive finding that crowded
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locations are tracked better. We predict that the better tracking of the crowded locations
is due to the involvement of the unitary system. However, the unitary system, by defini-
tion, can only update a single location. If other locations crowd simultaneously, then it
will not be tracked better than the non-crowded location. More specifically, we expect
that the second most crowded locations will not be tracked better than the non-crowded
locations.

A Time Lag for Attention to Become Object-based That Increases With Increasing Number

of Objects. Building on the findings from Howard and Holcombe (2008) and Howard
et al. (2011), suppose that the mechanism by which attended locations follow the objects
is the same as object-based attention. In that case, we predict: (1) There is a time lag for
attention to become object based. (2) This lag increases with an increasing number of
attended objects.

IMPLICATIONS FOR VISUAL INDEXING THEORY EXPLANATIONS FOR MOT

An index-less approach to tracking an object uses representations12 of the object being tracked
(Figure 1). A part of the problem with the index-based account is that it tends to push the exact
ways by which tracking takes place into the background by formulating tracking as a primitive
process. Indeed, in the general case, tracking a visual element by relying on its representation
is hard. There is no denying how effortless we find tracking in many cases. Yet, just because we
find it effortless, there is no reason for the task to be done “simply”—the history of artificial
intelligence is replete with problems that we once thought were easy but which, upon inves-
tigation, have demonstrated themselves to be hard13.

The properties of an object may change without a change in its identity (e.g., “It’s a bird, it’s
a plane ... no, it’s Superman!”). An indexing-based account relies on indexes as the non-
conceptual, aka property-less pointers to each such object. Our account, that does not use
indexes, has to rely on the properties of the objects. The criticality, however, lies in what kinds
of properties are used. Our account relies on the existence of their being some property (con-
ceptual or non-conceptual) that can help track the object at each time step. Each time step
may have a different property that gets used for tracking.

Pylyshyn (2000) (and also philosophers like Perry (1979)) have suggested that picking out
objects in our environments needs to be sometimes based on non-conceptual representations.
Our proposal does not contradict the role of indexicals and demonstrative references in the
taking of an action. Our work, however, does suggest that indexicals may not continue to be
bound to their referents even as the properties of the referents change over time. If the prop-
erties of the referents change, a cognitive process must update that link - and not just a visual
or auditory or a modality-specific process. The index-based explanation for MOT requires that
the indexes remain bound to their referents over some variation in the properties of the refer-
ents. We suggest that the amount of change in the referents is much smaller than the amount of
change that a tracking task involves. If this is the case, then Visual Indexing Theory can nat-
urally continue to, for instance, explain the phenomena of subitizing (Trick & Pylyshyn, 1994)
without any effect from our work.

12 It is still too early to comment on the conceptual or non-conceptual character of these representations.
13 Even the recent “successes” rely on unfathomably big data and energy consumption that a human child does
not require in order to learn language or make sense of their visual sense data.
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CONCLUSION

This paper investigates the theoretical position that indexes are not necessary for mul-
tiple object tracking. To this end, we conducted two experiments extending the obser-
vations made by Pylyshyn (2004) about the dissociation between tracking and ID
accuracy.

We also computationally investigated a model of index-free multiple object tracking built
according to this outline, and found that at least one index is necessary for such tracking. By
reproducing a number of previous empirical results with this model, we also showed that a
single index is sufficient for multiple object tracking.

Subject to the expectation that enabling attentional resolution of the objects would sub-
stantially prevent index-reassignments and enable FINSTs to remain bound to their refer-
ents, our empirical results are consistent with the existence of no more than 2 incorruptible
indexes and even 4–5 corruptible indexes. However, we agree with Scholl (2009) that
assuming indexing to be corruptible deprives indexes of the critical capacity they were
supposed to provide: providing a correspondence link between elements at the current
point of time and the elements at the previous point of time. Future experiments should
test whether attentional resolution is indeed sufficient for FINSTs to remain bound to their
referents. In addition, they will also need to incorporate the suggestion made by Pylyshyn
(2004) that it may be the case that indexes and discrete references might not be available
for use outside the tracking task which is a requirement to associate numeric labels with
the targets.

The empirical success of MOTUAF demonstrates that it is possible to explain human
MOT behavior without requiring the use of incorruptible pre-attentive indexes. Natu-
rally, just because such an explanation is possible, does not mean that it is true. We
note, though, that historically speaking, pre-attentive indexes were theoretically neces-
sitated because of the assumption that solving the correspondence problem is a prereq-
uisite to performing the MOT task (Luo et al., 2021; Pylyshyn, 2004). The theoretical
novelty of our project is that we show that MOT is possible without computationally
maintaining one index per object and thereby explicitly solving the correspondence
problem.

In light of the discrepancy observed in our model-based analysis, where we found that
fewer targets than 4 were ID’d better by humans than MOTUAF, it would be premature to
conclude that FINSTs play no role in MOT. It may well be that fewer targets than 4 (Pylyshyn’s
estimate of FINST count) could be tracked using FINSTs, and larger number of targets tracked
by the MOTUAF mechanism. It is also possible that MOTUAF practically reduces to FINSTs
while tracking fewer targets. Investigating this relationship presents an exciting avenue for
future work.

We conclude by pointing out that, the MOTUAF computational model, irrespective of its
psychological veridicality, opens up the possibility of producing fast multiple object tracking
algorithms scalable to large sets of objects, particularly in combination with neuromorphic
vision sensors (Pantho et al., 2018; van De Burgt et al., 2018). Consideration of such practical
applications is also an interesting direction for future work.

DATA AVAILABILITY STATEMENT

The data and code for the experiments and computational modeling may be found at https://
osf.io/nzs9f/.
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