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Multiple object tracking (MOT) involves simultaneous tracking of a certain number of

target objects amongst a larger set of objects as they all move unpredictably over time. The

prevalent explanation for successful target tracking by humans in MOT involving visually

identical objects is based on the Visual Indexing Theory. This assumes that each target is

indexed by a pointer using a non-conceptual mechanism to maintain an object’s identity

even as its properties change over time. Thus, successful tracking requires successful

indexing and the absence of identification errors. Identity maintenance and successful

tracking are measured in terms of identification (ID) and tracking accuracy respectively,

with higher accuracy indicating better identity maintenance or better tracking. Existing

evidence suggests that humans have high tracking accuracy despite poor identification

accuracy, suggesting that it might be possible to perform MOT without indexing. Our

work provides stronger empirical evidence for this position through two experiments, and

presents a computational model of multiple object tracking that does not require indexes.

Experiment 1 characterizes how the disparity between tracking and ID accuracy varies

with an increasing number of targets. However, the results of both experiment 1 and

related earlier experiments can be explained by allowing for index reassignments due to

close approaches between objects. Experiment 2 addresses this confound by minimizing

tracking errors and maximizing ID errors even under conditions in which indexes should

https://www.cse.iitk.ac.in/users/nsrivast/


Abstract vi

not be reassigned. Our results suggest that multiple object tracking in humans does not

require the involvement of non-conceptual indexes, even when the number of targets is as

few as three. Finally, our computational model of MOT without indexing accounts for

several empirical tracking accuracy patterns as well as the dissociation between tracking

and identification accuracy previously produced in the literature, and makes several novel

predictions.
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Chapter 1

Introduction

Object tracking is essential for any system or organism that lives through time. An exam-

ple cited by Pylyshyn (2007, 2009) concerns the construction of a system that Pylyshyn

et al. (1978) attempted to build in order to perform geometrical reasoning in a psycho-

logically plausible manner (Figure 1.1). Like a human, such a system was constrained

to notice various aspects of the image over time without having access to all the aspects

simultaneously. In particular, this required positing that there is a mechanism by which

one can say that two visual elements at two different points of time refer to the same

”thing”. Two examples based on Figure 1.1 (iv) include: (a) noticing that the intersection

that has a right angle in (iv) is the same intersection formed by the two straight lines L1

and L2 which were noticed earlier in (iii), or also, (b) the two straight lines are indeed the

same ones that were drawn and noticed yet earlier in steps (i) and (ii). Eventually, this,

amongst other things, led Pylyshyn (1989) and Pylyshyn and Storm (1988) to consider the

existence of a non-conceptual mechanism that can solve the correspondence problem of

identifying which relevant visual element at a time point t is which relevant visual element

at another time point t+∆t.

This mechanism is Pylyshyn’s famous Fingers of INSTantiations (Pylyshyn, 1989, 2001)

proposal, which suggests the existence of more-than-one pointers1 providing parallel non-

conceptual access to visual elements through time. A FINST has been described as a

sticky reference to visual elements that keeps pointing to the elements even as their

location or other properties change over time. The FINST uses only the non-encoded

1Throughout this thesis, the terms FINST, pointer, and index have been used interchangeably as a
noun. The term ”index” is also used as a verb in several places.

1
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L1 L1

L2

L1

L2

P

L1

L2

P

Figure 1.1: Illustration of how the process of noticing things in the environment happens
in a step-by-step manner using a geometric reasoning task. (i) Notice the line L1 (ii) Notice
another line L2 (iii) Notice that the L1 and L2 intersect at P . However, notice that this
also requires noticing that the L1 and L2 are the same ones that we had noticed when
we were processing step (i) and (ii). (iv) Notice that the angle at P is actually a right
angle. Again, notice that this also requires noticing that this P is the same P that we

had considered in (iii).

Figure 1.2: A Multiple Object Tracking (MOT) task can be identified by three phases:
Left - target designation phase, in which the targets are highlighted either by using a
different color or blinking or both. Center - tracking phase, in which the targets are
visually distinct from the distractors, and all the object move around potentially randomly
on the display. Right - response phase, in which the participant is asked to select all the

objects that they think are the targets.

(non-represented, non-conceptual) properties to maintain the reference, not the encoded

(represented) properties.

MOT tasks in the literature can be broadly classified into two kinds: (i) those involving

visually identical objects (ii) those involving visually distinct objects. In MOT tasks with

visually distinct objects, both indexing as well as the visual distinctiveness of the target

objects can be used to perform tracking, e.g. Horowitz et al. (2007) suggest a significantly

greater capacity to track visually distinct objects than visually identical objects. Since

our work focuses on the nature of indexing, our work uses MOT tasks involving visually

identical objects. Thus, we focus on a classic variant of MOT (Figure 1.2) that involves
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the tracking of n target objects amongst m visually identical distractor objects, all moving

randomly.

Following Vul et al. (2009), we adopt a definition of tracking accuracy as the percent-

age of the tracked objects that are targets at the end of the trial. Similarly, success in

identification is measured using identification (ID) accuracy, defined as the percentage of

tracked objects that are labelled correctly. For both measures, the number of targets is

the same as the number of tracked objects in the experiments we consider. In particular,

for an MOT trial with n targets and m distractors, suppose that the participant identifies

k ≤ n targets correctly, and the remaining (n − k) objects that the participant identifies

as targets are actually distractors. Then, the tracking accuracy2 is given by k/n. Each

target may be given a label to check its identity maintenance by the participant. The

labels are visible only at the start of the trial.

According to the FINST-based explanation of MOT (Pylyshyn, 2004), at the start of the

trial, the participant forms an association between each target (thus, its identity) and its

label. During the trial, the labels disappear and the objects move around. The participant

maintains each tracked object as an individual entity, and does not confuse its individuality

with other tracked objects. Then, at the end of the trial, the participant retrieves from

memory the label associated with each tracked object, and responds accordingly. Suppose

that the participant labels p ≤ n targets correctly. Then, the ID accuracy is given by p/n.

Contemporary computational models of MOT of visually identical objects are also usually

premised on the existence of FINST-like non-conceptual pre-attentive indexes in the visual

system (Alvarez & Franconeri, 2007; Oksama & Hyönä, 2008; Srivastava & Vul, 2016)3.

These indexes enable the models to establish a correspondence between the representation

of an object that is being noticed at the current moment and an earlier one. Pylyshyn’s

work indicates that the number of FINSTs available in human visual perception to be

2In our experiments, as well as the experiment 4 of Pylyshyn (2004) relevant to our work, we ask
participants to identify all the targets and label all of them. In this case, the tracking accuracy is given by
k/n. However, in some other experiments in the literature, at the end of the MOT trial, one of the object
becomes visually distinctive. This object is a target or a distractor with equal probability. Following
this, the participant is asked to indicate whether the object is a target or a distractor. In this case,
the participant has a k/n probability of identifying the target correctly if the object is a target and a
(n − k)/n probability of identifying the distractor incorrectly if it is a distractor - since, according to the
participant, the remaining (n− k) objects are also targets. In other words, the participant also has a k/n
probability of identifying the distractor incorrectly. Overall, the average accuracy in this case boils down
to 1/2 ∗ (k/n) + 1/2 ∗ (k/n) = k/n.

3Note that the model described by Oksama and Hyönä (2008) concerns the tracking of visually distinct
objects. However, it is trivial to adapt it to the task of tracking visually identical objects by letting go of
the corrective attention shift involved in step 4b described under its functional description.
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between 4-5. However, Alvarez and Franconeri (2007) have shown that, MOT task par-

ticipants are able to track not just 4 but even 8 objects with 94% accuracy (at sufficiently

low movement speeds). Their experiments also noted that the speed-threshold for 94% ac-

curacy deteriorated smoothly with increasing number of targets happens smoothly rather

than abruptly. Overall, these results suggest either that the number of FINSTs is flexible

or that MOT might be possible without FINSTs.

The strongest prior evidence against the involvement of FINSTs in MOT comes from

the experiments in Pylyshyn (2004), whose results suggest a disparity between ID and

tracking accuracy. In this case, the ID accuracy is worse than, as well as deteriorates

more rapidly than tracking accuracy as a function of tracking duration. For instance,

for a tracking duration of 10 seconds, tracking accuracy is 70% while the ID accuracy is

30%. Since FINSTs are meant to provide an apriori incorruptible mechanism to establish a

correspondence between two visual elements, one being accessed currently while the other

that was present at an earlier point of time, they do not offer a natural explanation for

the confusion in object identities seen in Pylyshyn (2004).

In the rest of this thesis, we firstly discuss what tracking with and without indexes means

to set the stage for our work. There, we also outline a model of tracking that does not

use indexes. We also elaborate on this model computationally after discussing the two

experiments, and note that the model can account for several specific empirical results

documented empirically, viz.

1. decrease in tracking accuracy with increasing number of targets,

2. decrease in object speed thresholds corresponding to a particular accuracy with

increasing number of targets

3. dependence of tracking accuracy on crowding aka object speed as measured in terms

of scene-widths per second rather than absolute speeds

4. variation in tracking and ID accuracy disparity with increasing trial duration

5. variation in tracking and ID accuracy disparity with increasing number of targets

While accounting for these, our modeling work suggests some model-limitations, several

interesting predictions about tracking, as well as on some constraints involved in attending

to multiple objects simultaneously. 4.

4A preliminary version of this work has appeared in the Proceedings of CogSci 2023. The present draft
extends the preliminary model to accommodate a unitary system, and presents additional experiments and
analysis in support of our conclusions.



Chapter 2

Tracking with and without indexes

Before presenting our model, we discuss what it means to say that indexes are involved in

tracking and, thus, what an index-less model should look like.

Both index-based and index-less accounts involve the processing and use of the instanta-

neous location information of the objects by the visual system for the MOT task. The

critical difference between the two accounts is at what stage of information processing the

location information gets used for tracking. The indexes in the Visual Indexing Theory

are a part of the early visual system (Pylyshyn, 2001). They use the location information

soon after the early visual system processes it (Pylyshyn, 2007) (chapter 3). This process

is stimulus-driven and automatic. No representations or concepts are involved1 - the loca-

tion information is necessarily non-conceptual2. On the other hand, an index-less account

of tracking requires the location information to be represented and made available to the

cognitive system before it gets used for tracking.

Overall, The early visual system processes the location information from the retinal stimu-

lus into non-conceptual location information. An indexing-based account uses this location

1While representations might refer to any information bearing state, and thus, the early visual system
might represent information in some sense of the term ’representation’, Pylyshyn (2007) (chapter 3) argues
that there are at least two senses of the term. The first sense, referring to any information-bearing state,
is better referred to as registration. A registration is necessarily causally connected to the world and
there is no possibility of misrepresentation. The second sense refers to states that have a possibility
of misrepresentation. These have a representational content for the organism, thereby determining the
organism’s behavior. Above, when we say that the location information is not represented for index-based
tracking, we have used the second sense of ’representation’. In an index-based account of tracking, the
location information is only registered and not necessarily encoded (represented).

2The location information of the objects present in the early visual system is necessarily non-conceptual
and inaccessible to the cognitive system. Further processing may make this information accessible to the
cognitive system. The information may be conceptual or non-conceptual at that point - we do not comment
on it.

5
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Figure 2.1: The difference in information processing of an index-based account of MOT
vs. a non-index-based account of MOT.

information for tracking. The visual system further processes and encodes this informa-

tion, making it available to the cognitive system. An index-free account uses this location

information.

While presenting support for FINSTs, Pylyshyn and Storm (1988) had reported a com-

putational model of tracking with assumptions based on the empirical literature available

then. This model - the Serial Tracking Algorithm - was based on the updation of encoded

(represented) location information by the cognitive system and was, therefore, an index-

less model. However, the tracking accuracy possible with this Serial Tracking Algorithm

was about 30%. On the other hand, the human participants had a much better tracking

accuracy of 87%. This disparity led them to accept that tracking happens through a pre-

attentive parallel mechanism that does not require location information to be encoded -

the process of using the encoded location information is too inefficient. This pre-attentive

mechanism is precisely that of the FINSTs or the Visual Indexing Theory.

Pylyshyn and Storm (1988) report that the index-less Serial Tracking Algorithm could

not account for the human tracking accuracy even after several augmentations. However,

we propose that these assumptions are inconsistent with some of the evidence collected

since then. Firstly, the Serial Tracking Algorithm assumes that focal attention moves

continuously from one location to another, passing through all locations between objects.

However, Egeth and Yantis (1997) have indicated that the movement of attention is quan-

tal. Secondly, the algorithm does not acknowledge events happening at rates beyond 10Hz

(such as the phi phenomena, Wertheimer (1912)) because even when velocity information

was used for tracking, the dwell time was assumed to be about 100 ms.
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Table 2.1: A comparison of an index-based vs index-less account of MOT

Index-based account Index-less account

Tracking performed by Early Visual System Cognitive System
Location information is non-conceptual Conceptual or non-conceptual
Representations are Not involved Involved

Moreover, Scholl et al. (2001) report that in an MOT task, participants indeed have cogni-

tive access to the location information of the targets. In their experiment, all the objects

disappeared briefly at the end of a MOT trial. After 200 ms, all but one object became

visible again. The participants had to indicate the location of the disappeared object

and whether it was a target or a distractor. They noted that participants’ accuracy was

significantly better for targets than distractors. Suppose the location information was

cognitively inaccessible. In that case, equal disappearance-detection accuracy would be

expected for both targets and distractors. Contrary evidence, thus, indicates that the

location information is cognitively accessible. Cognitive access requires that the location

information is accessed as representations. These experiments raise questions about the

critical assumption behind index-based explanations of tracking, that the location infor-

mation is used without it becoming accessible to the cognitive system. Stronger evidence

in support of the position that the early visual system can perform MOT - per the Vi-

sual Indexing Theory - can be obtained by studying MOT in participants with blindsight;

however, we know of no such experiment.

To summarize, if an account of tracking involves updates of representations then that

account would qualify as an index-less account of tracking. On the contrary, if no repre-

sentations are involved, and tracking takes place through non-encoded (non-represented)

information using FINST-based pointers, then that will be an index-based account of

tracking.

2.1 MOTUAF: Multiple Object Tracking as Updates of At-

tended Features

The crux of the index-less tracking approach we propose is two retinotopic maps, one

corresponding to the actual features of the objects themselves and another corresponding

to the attended features, which corresponds to the reportable features of the objects.

Unlike Blaser et al. (2000), who explored tracking an object through the feature spaces

of color, orientation, and spatial frequency, our work limits itself to studying MOT in
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Attended Location 
without object

Attended Location
with object
Unattended Location
with object
Unattended Location
without object
Direction of movement
of the object

Update of 
attended location

Update of 
attended location

time

Legend

Update of 
attended location

Update of 
attended location

An overlay of two retinotopic grid maps indicating 
(i) the presence or absence of objects 
(ii) whether or not a particular grid is being attended to. 
The figures on the right are an enlarged versions of 
corresponding ones on the left.

A retinotopic grid map 
indicating the attended 
locations aka the 
locations of the targets 
according to the model.

Figure 2.2: An illustration of our model with the shaded grids in the retinotopic grid
map indicating the attended locations aka locations supposed to correspond to targets,
along with the presence / absence of objects at each location. While indexes provide
a location-independent means to individuate two objects, there exist no such location-

independent way to distinguish between two attended locations.

the location space. In this case, the existence of a map of attended locations as distinct

from the map of the actual locations of the objects is also evident through the reports

by Howard and Holcombe (2008) and Howard et al. (2011), which suggest a dissociation

between the representations of positions of the targets and the actual positions of the

targets themselves.

The exact structure of each of the two maps will remain a topic of future work. However,

in general, we consider each map to be comprised of a number of grid cells corresponding

to the different locations on the retinotopic map. Each grid cell of the first map indicates

the presence or absence of an object and only their number but not identity. Each grid

cell of the second map indicates the presence or absence of attention and, equivalently, the

represented object locations.

The updates to this first retinotopic map of objects are stimulus-driven, parallel, and

effortless. Howard and Holcombe (2008) and Howard et al. (2011) indicate that the disso-

ciation, aka the time lag between the position representations of targets and their actual

locations, increases with an increasing number of targets. Given that, we expect that the

updates to the map of attended locations are effortful and, thus, happen sequentially or

parallelly with a constrained resource. The sequential nature of updates is also evident
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through the findings by Holcombe and Chen (2013) who have noted that the tracking limit

for 2 targets is almost one-half that of 1 target, while the tracking limit for 3 targets is

almost one-third of 1 target.

Thus, we propose that the updates of the attended grid cells on the second map constitute

the constrained resource. In this framework, multiple object tracking consists of main-

tenance of attended features (in our case, locations) so that they keep corresponding to

objects as far as possible. Such maintenance involves an update of attended features (lo-

cations) that no longer correspond to any objects to other nearby features (locations) that

correspond to an object. The greater the number of targets, the less frequent the updates

to each target’s relevant feature; thus, the maintenance is worse. This assumption is a

specialization of more generic resource constraints found in the works of Alvarez and Fran-

coneri (2007) and Srivastava and Vul (2016). Alvarez and Franconeri (2007) demonstrate

that tracking is limited not by a fixed number of indexes as the FINST theory suggests

but by a shared resource. They relate this shared resource to the precision with which an

object is selected; thus, more the allocated resource, more is the precision with which the

object is selected and lesser the tracking errors. Srivastava and Vul (2016) incorporate this

explanation in a computational model, which they show can explain trial level variations

in MOT performance across different participants. In MOTUAF, the spatial precision

arises naturally from the updates of attended features; the update process is elaborated

under ”MOTUAF Attention updates” under the section on Computational Modeling.

Most importantly, unlike FINST (Pylyshyn, 1989, 2009) and MOT models based on FIN-

STs, all attended locations in our model are indistinguishable except by their locations.

The contrast is that FINST-based models enable individuating objects without considering

their visual features or locations because a different FINST indexes each object.

We assume that the total number of attended locations can vary within an individual based

on task requirements. We expect an upper limit to the number of attended locations; it is

certainly above 4 given the evidence that subjects can track as many as 8 objects with 94%

accuracy, moving at low velocities (Alvarez & Franconeri, 2007). We speculate that the

limit should be related to one’s working memory capacity, a question future work should

address.
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2.2 Identity maintenance without indexes

MOT, as proposed here, does not allow the system to access object locations at two

different time steps and, thus, does not require the system to solve the correspondence

problem.

To keep track of IDs, we therefore propose that there also exists a separate sequence of IDs.

One possible strategy for maintaining such a sequence is to keep reciting the sequence. To

match objects to IDs, one needs to go over the attended objects in some spatial sequence

while reciting their IDs in that exact sequence.

Alongside the sequence of IDs, there also exists another sequence corresponding to the

attended locations. Such a sequence can be obtained by sorting the attended locations

in a non-decreasing order of x-and-y coordinates. The ID sequence consists of IDs of the

objects arranged according to these attended locations. ID maintenance, then, involves

maintaining the explicit correspondence between the sequence of IDs and the sequence of

attended locations. ID errors arise when one fails to update this correspondence.

Our proposed mechanism for object identification yields a concrete testable prediction: as

the number of targets increases, the length of the ID sequence and the attended location

sequence increases. Thus, updating them to maintain the correspondence becomes harder

and thus the tracking-ID accuracy disparity should increase with increasing number of

targets. Experiment 1, discussed in the next section, tests precisely this prediction.



Chapter 3

Experiment 1

Pylyshyn (2004) have previously shown an ID-tracking accuracy disparity with respect

to tracking duration for MOT tasks involving visually identical objects. However, no

earlier work has examined how this disparity varies with changing number of targets.

Based on earlier results, (Pylyshyn & Storm, 1988), we expect the tracking (as well as

the ID) accuracy to decrease with the increasing number of targets. However, in addition

to these two main effects, our proposed explicit ID maintenance mechanism predicts that

the participants will not be able to do correspondence updates as rapidly as required by

the changing spatial sequence of targets. Therefore, the ID accuracy will degrade more

rapidly than tracking accuracy with the increasing number of targets. We decided to test

this prediction against data from human participants. This MOT experiment involves

both ID and tracking tasks, randomly varying the number of targets across the trials.

3.1 Participants

13 participants (8 men, 5 women) participated in the experiment. All had normal or

corrected to normal vision, and none were colorblind. An IRB approved the protocol for

the experiment.

3.2 Procedure

10 practice trials, followed by 80 main trials were employed. The number of targets varied

from 1 to 8 across the trials. 10 trials for each case of number of targets from 1 to 8

11
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Figure 3.1: Tracking and ID accuracy of participants with increasing number of targets
in experiment 1.

accounted for the 80 trials. Each trial had 14 objects. The tracking duration in each trial

was 5 seconds but the trials were self-paced and randomized. In each trial, the participant

had to select all the targets and indicate the ID number for each of the target. This

procedure was similar to that employed in Experiment 4 of Pylyshyn (2004).

3.3 Materials

For the purposes of the experiment, the visually identical objects comprised of small circles

with a diameter of 10 pixels. The participants sat at a distance of about 60 cm from the

display. Thus, each object subtended an angle of 0.23◦ at the retina, and the objects were

allowed to move in a 720x720 pixels square area whose diagonal subtended an angle of

23.5◦ at the retina.

3.4 Results

Repeated measures two-way ANOVA was conducted with tracking-vs-ID accuracy as

one factor, and the number of targets as the second factor. The results were as per

the expectations discussed above (Figure 3.1) - there was a significant interaction effect
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Figure 3.2: Pairwise comparison of average tracking and ID accuracy across different
number of targets. ’n’ denotes the number of targets. Error bars denote 1SEM. Compar-
isons marked ’ns’ are statistically insignificant, those marked ’*’ have p < 0.05, ’**’ have

p < 0.01, ’***’ have p < 0.001, ’****’ have p < 0.0001.

Table 3.1: Pairwise comparison of average tracking and ID accuracy across different
number of targets using Bayes’ Factor. The null hypothesis is that both the accuracies
are equal; the alternate hypothesis is that both are different. The Bayes’ Factor expresses
the support for the alternate against the null - a high value indicates greater support for

the alternate.

Number of Targets 1 2 3 4 5 6 7 8

Bayes’ Factor NA 0.61 17.7 173 91.6 9.2× 103 1.5× 105 3.7× 105

[F (3.46, 41.47) = 37.638, p = 1.39×10−12] as well as significant main effects for number of

targets [F (7, 84) = 70.845, p = 1.49×10−32] and task [F (1, 12) = 113.476, p = 1.80×10−7].

Figure 3.2 summarizes the tracking-ID accuracy disparity for each of the number of targets.

The p-values are adjusted according to Bonferroni correction with a factor of 8. The

comparison is also performed in terms of Bayes’ Factor in Table 3.1 (Morey et al., 2015).

When number of targets is 4 or more than 4, the disparity between tracking and ID

accuracies is statistically significant at an α-level of 0.05 and a Bayes factor threshold of

30.
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Figure 3.3: Viswanathan and Mingolla (2002) provide empirical evidence that the ab-
sence of T-junction cues (left) corresponding to the overlap of two objects deteriorates
tracking accuracy in an MOT task. On the other hand, the presence of such cues (right)

does not significantly reduce accuracy.

3.5 Discussion

Experiment 1 checked how the disparity between tracking and ID accuracy varies as the

number of targets increase from 1 to 8. Empirical evidence from this experiment indicated

that the ID accuracy was indeed worse than tracking accuracy when the number of targets

4 or more. Further, we note that in Pylyshyn (2004), as well as our experiment 1, objects

were allowed to come arbitrarily close to each other and cross paths. Trick and Pylyshyn

(1994) have used indexing to explain subitizing. This phenomenon involves the rapid and

accurate counting of the number of items when there is a small number of them. Such

counting is slow and prone to errors when the number of items exceeds four or five. Trick

and Pylyshyn (1994) explain this phenomenon by proposing that when the number of

items is 4-5 or less, counting them involves merely counting the number of active indexes

assigned pre-attentively and automatically. However, when the number of items exceeds

4-5, then indexes need to be reassigned, and participants need to keep track of which

items have been already counted. This process is slow and prone to errors. Intriligator

and Cavanagh (2001) have noted that there are certain specific conditions, aka conditions

of attentional individuation, in which the objects can capture the FINSTs even when the

number of objects is 4 or less. In particular, when the objects are close to each other,

participants can resolve them visually but not select them individually using attention.

We suspect that these same conditions are the conditions that allow FINSTs to remain

bound to their referents.

The experiments in Pylyshyn (2004) allowed objects to overlap, but they also provided T-

junction cues (Figure 3.3) corresponding to the object overlaps. Viswanathan and Mingolla
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(2002) have indicated that the provision of depth cues such as T-junctions for overlapping

objects does not deteriorate tracking accuracy significantly. However, it is unclear if such

cues also prevent the disruption of subitizing discussed above (Intriligator & Cavanagh,

2001). Pylyshyn (2004) acknowledges this for the posthoc analysis of experiment 4.

Thus, to find out if it is rather the case that the worse ID accuracy in the cases when

number of targets was 2, 3, or 4 was a result of FINST reassignments enabled by the close

encounters of objects, we report a second experiment that was specifically designed to keep

the objects separate from each other while also maximizing the possibility of ID errors.



Figure 4.1: The figure illustrates the sample paths (dotted lines) of two objects (filled
black circles) following motion dynamics similar to a magician’s shell game. (See the
description of Task 2 under the section on Procedure of Experiment 2.) The objects were
constrained to move along the edges of the circles, so that their spatial order changed
rapidly. Even amongst these, only those computer generated trials were selected in which
the objects always stayed at least at a distance of 120 pixels (4 degrees) from each other.
With a rapidly changing spatial order, the ID maintenance mechanism as suggested in
the text would have a hard time keeping a track of IDs and would tend to make errors. A
demonstration of a practice trial is at README-res/exp-2-demo.mp4 provided with the

Supplementary Code and Data.

16
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Chapter 4

Experiment 2

The second experiment consisted of two tasks designed to obtain tracking-ID accuracy

dissociation without violating the conditions for attentional individuation discussed above.

In the first task, we asked participants to choose a speed limit for the objects at which they

were barely able to track them. We used these per-participant speed limits in the second

task to choose trials specifically designed to confuse identities. These trials were based

on novel motion dynamics based on the magician’s shell game. In all the trials, objects

always remained at a minimum visual-angle separation of 4 degrees from each other. The

motivation for choosing this separation has been elaborated in the Materials section below,

while the motion dynamics are elaborated in the discussion of Task 2 under the section on

Procedure.

By preventing objects from approaching each other, we intended to eliminate the possi-

bility of tracking errors arising from index reassignments. In this case, an indexing-based

account would predict that the participants will not make ID errors in the second task.

Contrapositively, ID errors on the second task would raise concerns for the indexing-based

account. Explaining ID errors would necessitate positing that indexes are corruptible or

require a non-indexing based account of MOT - some non-indexing based account, even if

not the one we propose in our work.

4.1 Participants

12 participants (7 men, 5 women) participated in the experiment. All had normal or

corrected to normal vision, and none were colorblind. An IRB approved the protocol for
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the experiment.

4.2 Materials

For the experiment, the visually identical objects were small circles with a diameter of

30 pixels. The participants sat about 40 cm from a full HD display with a diagonal of

21-inch length. Thus, each object subtended an angle of 1◦ at the retina. The objects

were restricted to move in a 1080x720 pixels square area, which subtended an angle of

37.4◦ × 25◦ at the retina.

Our decision to use the minimum object separation of 4 degrees is based on the second

experiment in Intriligator and Cavanagh (2001). Preventing index reassignments requires

that the minimum distance between the objects be greater than the attentional resolution.

Intriligator and Cavanagh (2001) report a 75% accuracy in the stepping task corresponded

to an attentional resolution of (i) 3 arc min at the fovea (ii) 2◦ at an eccentricity of 15◦.

Attentional resolution corresponding to an eccentricity of 19◦ would be ideal for our task;

however, in its absence, we use the attentional resolution corresponding to 15◦ eccentricity.

Note also that we are interested in near-100% accuracy rather than merely 75%. From

the figure 11 of Intriligator and Cavanagh (2001), one may note that halving the density

in the stepping task at 15◦ eccentricity would correspond to an accuracy over 90%. This

halving would correspond to an attentional resolution of 4◦. A similar separation has also

been used in Alvarez and Franconeri (2007) who report a minimum separation of 4◦ for

a display 30◦ × 24◦) and a tracking accuracy of 94%. Participants were asked to fixate

on a central cross, but they were told they can move their eyes if it helps them with the

task. Thus, we expect the separation of 4◦ to be sufficient for attentional resolution and

preventing index reassignments.

4.3 Procedure

Both tasks employed trials, each of which had 2, 3, or 4 targets. Each trial of both tasks

has a target designation phase, during which the targets were visually distinct (green) from

the distractors (red). Following this was the tracking phase, during which all the objects

were visually identical (white) and moved about on the display. Once all the objects

stopped moving, the response phase began in which the participant had to indicate their

response, which depended on the task and has been elaborated below. In all the trials, all
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pairs of objects were separated by 120 pixels on the display, translating to about 4 degrees

of visual angle in the periphery.

4.3.1 Task 1: Maximum speed for error-free tracking

The first task was a calibration task intended to find the maximum speeds at which the

participants could track objects under the circumstances of the experiment. It employed

three blocks, each differing from the other in terms of the number of targets. The sequence

of blocks was counterbalanced across the participants. This meant that if one participant

performed calibration in the order of blocks containing 2 targets, 3 targets, 4 targets, then

another participant would perform the calibration in the order containing 4 targets, 2

targets, 3 targets, and so forth for the other permutations of the sequence [2,3,4].

In this task, there were 8 objects, and 2, 3, or 4 targets. The object motion dynamics

followed the Ornstein-Uhlenbeck dynamics with the restriction that any two objects will

always be at least 120 pixels aka 4◦ away from each other. The participants were told that

in this task, they had to identify the maximum speed at which they can perfectly track

all the targets. They were asked to use the up and down arrow keys of the keyboard to

adjust the objects’ speeds.

Pressing the ’up’ arrow key once increased σ for the ongoing trial by 0.5 up to a maximum

of σmax = 6.0, and ’down’ arrow key decreased σ by 0.5 down to a minimum value of

σmin = 0.5. At the start of the trial, σ was initialized to σ0 = 1.0.

If the participant was successful in identifying all the targets in the current trial T with

σ = σT , σT+1 for the subsequent trial T + 1 was randomly set to either the same σT as

the current trial, or σT + 0.5, or σT − 0.5, all three with equal probability of 1/3 each,

upper bounded by σmax = 6.0 and lower bounded by σmin = 0.5. On the other hand, if a

participant was unsuccessful in identifying all the targets, σT+1 was reset to σ0 = 1.0.

For each block, calibration was said to be successful if the participant correctly identified

all the targets for 5 consecutive trials, and the σ value across these 5 trials varied by a

maximum of 0.5. Once this condition was met, the participant was informed that calibra-

tion for that particular target number was successful, and the next block was initiated.

Once all the blocks were completed, the experiment moved on to the next task.
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4.3.2 Task 2: ID and tracking error dissociation

Task 1 ensured that for each case involving the number of targets as 2, 3, or 4, the speed

chosen was such that participants could still track the objects perfectly and, thus, avoid

tracking errors except perhaps by attentional lapses. Task 2 differed from Task 1 since Task

2 required the same participants to keep track of the target labels. As in Pylyshyn (2004),

these labels were shown alongside the targets during the target-designation phase, while

no such labels were present during the tracking phase. In the response phase, participants

had to click on the target and indicate its label using the number keys.

Accordingly, participants were asked to keep track of which target is which to indicate

the target labels at the end of the trial. There were 15 practice trials, with 5 trials for

each cases involving the number of targets as 2, 3, or 4. Participants received feedback

for these practice trials indicating correct and incorrect responses. Following the practice

trials, there were 30 main trials, with 10 trials for each case involving the number of targets

as 2, 3, or 4. No feedback was provided for the main trials. The order of the trials in each

of the practice and main blocks was randomized.

To discuss the motion dynamics of the trials, we wish to draw the readers’ attention to the

shell game played by magicians. This game involves a pea or a small ball being placed under

one of the three identical shells placed in a row. The shells are then exchanged rapidly

and the participants may lose track of the shell under which the pea was placed originally.

A magician may use tricks other than rapid motion to violate participants’ expectations

of which shell contains the pea. However, we propose that rapid motion alone is sufficient

for the participants’ to lose track of the shell under which the pea was placed originally.

Because the shells are visually identical, the only way in which participants can keep track

of the original shell is by maintaining its individuality. Following the Visual Indexing

Theory based explanation of tracking, the pointer or index can easily follow the original

shell and help the participant maintain its individuality. However, we propose that this

is not the case, and maintaining the individuality of the original shell even as its location

changes requires effort.

In our experiment, visually identical circles replace the shells in the magicians’ game. The

distinction between the shell containing the pea vs those not containing the pea is replaced

by a unique label given to each target. Then, the individuality of the different targets is

maintained by the correspondence updates as discussed in the section on ’Identity main-

tenance without indexes’. The resulting motion dynamics are demonstrated in Figure 4.1

and a dynamic stimulus will be uploaded to a publicly accessible URL after the review.



Chapter 4. Experiment 2 21

Table 4.1: Mean ID error rates of the participants across the practice and main blocks
for each case of number of targets equal to 2, 3, and 4. The Bayes factor corresponding
to the support for the hypothesis that ID errors are non-zero against the hypothesis that
the ID errors are zero are shown with the mean error rates in brackets next to them.

Block \ Number of
Targets (Bayes Factor, BF10) 2 3 4

Practice 0.44 (1.67%) 12.6 (15.8%) 147.3 (23.8%)

Main 1.32 (5.83%) 142.0 (15.4%) 20.7 (20.0%)

(The dynamic stimulus has, nonetheless, been uploaded as a short video along with the

manuscript on Janeway / Open Mind.)

Before the experiment, we generated trials for task 2 for each speed the calibration task

could have yielded. These trials were subject to three constraints: (i) the objects followed

motion dynamics similar to a magician’s shell game, (ii) no objects ever came closer than

120 pixels aka 4 degrees of visual angle in the experimental settings, (iii) our simple

heuristic employed for ID tracking performed with less than 100% ID accuracy.

For the number of targets equal to 2, we generated trials for speeds ranging from 0.5 pixels

per frame to 18 pixels per frame. For the number of targets equal to 3, the speeds ranged

from 0.5 pixels per frame to 11 pixels per frame. For the number of targets equal to 4, the

speeds ranged from 0.5 pixels per frame to 7 pixels per frame. Generating trials for higher

speeds when the number of targets equaled 3 or 4 (and the number of objects equaled 4

or 5 respectively) was computationally expensive, and so was avoided.

For number of targets equal to 3 and 4, it was computationally expensive to come up

with trials following the magician’s shell game dynamics that also satisfied the other two

constraints; thus, we had to restrict the upper limit of the speeds in these cases to 11 and 7

pixels per frame respectively. In addition, the same computational constraints also forced

us to limit the number of objects to no more than one plus the number of targets.

Thus, while the previous task had 8 objects, this task had trials containing (2 targets, 3

objects), (3 targets, 4 objects), or (4 targets, 5 objects). Each trial had 1 distractor to

further rule out trials containing ID errors resulting from tracking errors due to attentional

lapses.
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4.4 Results

We excluded trials in which the participant made tracking errors, assuming they resulted

from attentional lapses. Out of 120 trials for each of the three cases (10 trials per partici-

pant), this resulted in the removal of

• 0 trials for the case of number of targets equal to 2.

• 3 trials (1 practice, 2 main) for the case of number of targets equal to 3.

• 12 trials (2 practice, 10 main) for the case of number of targets equal to 4.

On the remaining trials that contained no tracking errors, we conducted a Bayesian t-test

using the BayesFactor library (Morey et al., 2015) for each case involving the number of

targets 2, 3, or 4. The mean error rates of the participants across the practice and main

trials, along with the Bayes Factor for each case are indicated in the Table 4.1. Bayes

factor over 10 indicates that the data supports the hypothesis that ID errors are signifi-

cantly different from zero, consistent with tracking not reliant on incorruptible indexes. In

contrast, Bayes Factor below 0.1 indicates that the data supports the hypothesis that ID

errors is not significantly different from zero, consistent with tracking based on incorrupt-

ible indexes. Anything in between indicates an ambiguous result. With these thresholds,

we note that there are statistically significant ID errors for the number of targets equaling

3 or 4 even without tracking errors.

4.5 Discussion

In this second experiment, we took utmost care to ensure that ID errors do not take place

due to index reassignments. This was enabled by restricting the separation of objects to

at least 4 degrees of visual angle even at the 19 degrees of eccentricity that our experiment

required. We also eliminated trials with tracking errors in expectation that they were

caused due to attentional lapses. In this case, non-significant tracking-ID accuracy dispar-

ity would lend support to the indexing-based account of tracking. Non-significant results

would also explain the tracking-ID accuracy disparities in Pylyshyn (2004) - the disparities

resulted from index reassignments due to the close approach of objects as suggested by

their post-hoc analysis.

However, with a Bayes Factor threshold of 10, we obtained statistically significant tracking-

ID accuracy disparity for the case of three and four targets (Table 4.1), suggesting that

humans are not using FINST-like indexes for such tasks. The results indicate ambiguity
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when the number of targets is two, but not definitive support for the use of incorruptible

indexes even in this case.



Chapter 5

Computational Modeling

5.1 MOTUAF-Unitary: Multiple Object Tracking as Up-

dates of Attended Features, augmented by Unitary Cog-

nition

So far, we have provided evidence supporting that MOT takes place without indexes and

outlined how this might happen. In this section, we detail a computational model for this

task and explore the implications of the conditions under which it can achieve patterns of

tracking performance that have been found in the literature.

To do this, we need to be more concrete about the structure of the maps we have so far

only identified conceptually. We assume that both the maps may be modeled by a two-

dimensional rectangular grid of cells each indexed by Cartesian coordinates. Note that

the assumption of Cartesian indexing need not be true; we are open to testing our model

using a circular grid involving polar coordinates or any other more neuropsychologically

plausible representations.

Next, we provide a formal treatment of the two maps, a unitary buffer, and their interac-

tions. For the rest of this thesis, let t denote an arbitrary point of time, and at that time

point, let

1. matrix Ot denote the grid of objects containing their actual locations

2. matrix At denote the grid of attended locations

3. U t = [ut, vt] denote a capacity-two sequence of locations corresponding to the unitary

process

24
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The notion of unitary processing will be made clear in the upcoming section.

5.1.1 The involvement of velocities

While trying to reproduce previous results on patterns of tracking performance, we noted

that relying solely on the information in a retinotopic map of instantaneous locations of

objects results in tracking performance worse than humans in a particular case. This case

arose when we tried to obtain the tracking performance pattern corresponding to object

speed vs. the number of targets from Alvarez and Franconeri (2007) and Srivastava and

Vul (2016) (Figure 5.1). In Alvarez and Franconeri (2007), the objects were constrained

to not come closer than 4 degrees of visual angle, but no such constraints were imposed in

Srivastava and Vul (2016); the objects were free to cross each other’s paths in Srivastava

and Vul (2016). The speed limit corresponding to a particular accuracy of the model

was almost the same as humans for Alvarez and Franconeri (2007) but was only half as

humans in Srivastava and Vul (2016). The poor speed limit of the model held even when a

single target was tracked. Thus, the disparity could not be attributed to a better update

scheme1. This called for the use of additional information for tracking.

Note that the need for this additional information is not changed by changing the structure

of the retinotopic maps. Indeed, changing the structure of the map of object locations

and attended locations can change the structure of the required additional information.

However, additional information - something more than the instantaneous locations - will

still be required. We further note that the performance limitation persists despite using a

grid resolution equal to the display resolution.

A natural candidate for this additional information is (locally computed) velocity infor-

mation. Holcombe (2022) has outlined two possibilities for using such information. One

possibility is to use velocity to estimate locations; however, several studies (Franconeri et

al., 2012; Keane & Pylyshyn, 2006) have noted the use of velocity information to estimate

locations as psychologically implausible.

Keane and Pylyshyn (2006) test participants’ tracking ability in the presence of occlusion.

The targets disappear briefly and reappear after a short interval of time. They report that

participants track better when the post-occlusion location of the targets is closer to their

1By default, our attention updates followed a round-robin scheme in the case of multiple targets. A
better scheme would involve updating the attended locations on a priority basis, for example, a more
crowded location might get more priority for update. The notion of an update scheme is better understood
through the discussion in the section on MOTUAF Attention Updates
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Figure 5.1: Left: The plots compare the object speeds vs. number of targets of the
model against empirical data from Alvarez and Franconeri (2007) and Srivastava and
Vul (2016), respectively AF2007 and SV2016, for 94% and 80% accuracy. The model
uses round-robin updates of attended locations with just the retinotopic object map and
attention map without any unitary processing. Right: MOTUAF-simple of the same
model as the one used on the left. MOTUAF-fa is a model variant with updates of
attended locations, always prioritizing the most crowded locations (see the section on
Unitary Processing). The rest of the model is the same as the one used for the left plot,
with just the retinotopic object map and attention map without the unitary processing.
A better update sequence can increase tracking performance for cases when the number of
targets exceeds 1. In this case, we obtained no performance advantage even for those cases.
We wish to bring the reader’s attention to the performance disparity between the human
and model performance in the single target case that calls for the use of information other
than the instantaneous object locations provided through the retinotopic object location
map. In both cases here, the floc of the model equaled the frame-rate of the display, with

both being equal to 30Hz.

pre-occlusion locations, than when the post-occlusion locations are closer to their motion-

extrapolated pre-occlusion locations. Franconeri et al. (2012) report similar results.

However, all the experiments in Franconeri et al. (2012) and Keane and Pylyshyn (2006)

used 4 targets and 4 distractors. Howe and Holcombe (2012) report that predictable

velocity information led to better tracking when there were two targets but not when

there were four targets. Thus, the use of velocity information to estimate locations remains

plausible in MOT.

Holcombe (2023) has suggested that human performance in multiple object tracking may

be a result of two systems working together - (i) velocity-using unitary cognition, that is,

a low-capacity process referred to as System 2 in the broader literature, along with (ii)

a nearest-neighbour-heuristic based high-capacity low-level process. The use of velocity

information for position estimation may then be the result of the involvement of System

2. With the involvement of both the systems, it becomes natural to explain why velocity

information is useful when there are few targets but not when they are more. Our sim-

ulations are in agreement that incorporating both systems is sufficient for obtaining the

patterns in tracking performance found in the literature.
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5.1.2 The Object Location Map and the Attended Location Map

Ot
ij = 0 indicates the absence of any object in the grid cell at row i and column j, and

Ot
ij = n indicates n objects in that grid cell. Similarly, At

ij = 0 indicates that the grid

cell at row i and column j is not being attended to. Any larger value indicates that the

location is being attended to with one or more objects (equal to At
ij) at that location

available for reporting.

At the start of the trial, at time t0, attended locations will certainly be identical to the

locations of the targets. That is, for each location where At0
ij is non-zero, Ot0

ij is also

non-zero. As the trial progresses, the attended locations may or may not correspond to

the exact locations of the objects. At an arbitrary time t during the trial, some At
ij may

be non-zero even though Ot
ij is zero. This discrepancy between Ot

ij and At
ij is the main

difference with respect to the FINST theory, which considers locations as being accessed

through the indexed objects, thus disallowing attention to locations without objects. As

suggested earlier while describing the outline, the idea that the position representations of

targets are not always identical to targets is compatible with the findings in Howard and

Holcombe (2008) and Howard et al. (2011). In light of the findings suggesting object-based

attention, it may be noted that the lag between the position representations and the actual

positions of the targets has been reported to be around 10-130 ms (Holcombe & Chen,

2013; Howard & Holcombe, 2008). Thus, even though attention may be object-based even

in MOT, we suggest that a certain duration is required for the proto-objects to capture

attention. However, the exact nature of this duration will require additional experiments.

Thus, in this framework, multiple object tracking consists of the maintenance of attended

features (in our case, locations) so that they keep corresponding to objects as far as

possible. Such maintenance involves an update of attended features (locations) that no

longer correspond to any objects to other nearby features (locations) that correspond to

some object. The update from t to t + 1 can be understood as the maintenance of the

following relation between the entries in At and At+1:

At
ij = 1 ⇒


At+1

ij = 1 if Ot′
ij ̸= 0

At+1
unitary-cognition-estimate(i,j) = 1 if Ot+1

ij = 0 and ut+1 = (i, j)

At+1
nearest-object-location(i,j) = 1 if Ot+1

ij = 0 and ut+1 ̸= (i, j)

(5.1)

Here, the condition ut+1 = (i, j) is true if the unitary process is processing the location.

The other entries in At+1 are set to 0. The above update assumes binary values of the
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entries in At for simplicity, but the model allows larger values of both O and A grid cells,

which arise when objects overlap within grid cells.

This update is assumed to be an expensive, constrained resource process, which we char-

acterize by a frequency of location updates floc. This frequency denotes the total number

of updates across all attended locations happening every second, so that greater the num-

ber of attended locations, less frequent are the updates to each location and, thus, worse

is the maintenance. In the section on ”MOTUAF Attention Updates”, we explain how

more attentional allocation leads to greater spatial precision as reported and utilized by

(Alvarez & Franconeri, 2007; Srivastava & Vul, 2016).

Most importantly, unlike FINSTs (Pylyshyn, 1989, 2009) and MOT models based on

FINSTs that enable individuating objects without considering their visual features or

even their locations, all attended locations in our model - except the one processed by the

unitary system - are indistinguishable from each other except by their locations themselves.

Further, following Alvarez and Franconeri (2007), we assume that the total number of

attended locations can vary within an individual based on task requirements. We expect

an upper limit to the number of attended locations; it is certainly above 4, given the

evidence illustrating that subjects can track as many as 8 objects moving at low velocities

(Alvarez & Franconeri, 2007). We speculate that the limit should be related to one’s

working memory capacity but leave the exact number open as a question for future work

to address.

Note that there are two kinds of updates in the model. The first kind involves updates

of the unitary processing, including deciding which attended object should be processed

using the unitary system. The second kind involves the updates to attended locations,

which correspond to the actual MOT task. We discuss each of these in the following two

sections.

5.1.3 Unitary Processing

In order to use velocity information to estimate the location of an object, we need infor-

mation about its location at at least two points in time. Following Holcombe (2022, 2023),

we restrict our model to do this only for a single object at any time step. So, whenever

a different object needs to be processed by the unitary system, the unitary processing’s

existing information will be discarded. Then, the location information corresponding to

the new object will be noted.
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We propose that unitary processing is utilized for targets in the greatest danger of being

confused with distractors. This proposal is consistent with the counter-intuitive finding in

Srivastava and Vul (2016) that crowded locations are tracked better.

For purposes of notation, let the subscripts denote one particular location on the retino-

topic map, and let the superscripts denote the particular instance of time for which these

are being considered. According to this notation, at1, a
t
2, ..., a

t
n will be the non-zero grids

in At at time point t, with n being the number of targets.

Then, for the attended location ati, the confusion is quantified by a confusion-ratio given

by:

cti =

{
dist(ati,nearest-object-location*(a

t
i, 1))

dist(ati,nearest-object-location*(a
t
i, 2))

}ce

(5.2)

Here, nearest-object-location* is a slight variant over the nearest-object-location men-

tioned previously.

• nearest-object-location takes in only the location l from where to start the search

and thus returns the location of the object l′ closest to that location l

• nearest-object-location* takes in the location l as well as a number k and returns

the location of the kth closest object nearest to the location l

Thus, for ce > 0, the confusion-ratio expresses that the confusion will be the greatest

when the distance between the second closest object and the attended location is as close

to the distance between the first closest object and the same attended location. In other

words, a high confusion-ratio indicates that the second closest object might come closer

to the attended location than the (first) closest object. Thus, the two may be confused.

Note that the confusion ratio is computable using information locally available for each

attended location.

The updates of attended locations then proceed in a manner determined probabilistically

by the confusion ratios. This probability is given by

pti =
cti∑n
j=1 c

t
j

(5.3)

Note that the greater the value of ce in Equation 5.2, the greater the probability that a

more confusable location will be chosen for update compared to a less confusable location.
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In particular, when ce → ∞, the probability of choosing the most confusable location will

be 1. In the section on ’Reproducing earlier MOT results’, we fix ce with a large value,

indicating that only the most confusable locations are always chosen.

We also impose the additional restriction that once the unitary system has chosen an

attended location for processing, it cannot process another attended location for about

100 to 300 ms. In other words, we fix the frequency fu at which the unitary system can

choose which attended location to process at about 3-10 Hz. Our simulations suggested

that this interacts with the rate at which object velocities change in the environment. This

effect is consistent with the results in Howe and Holcombe (2012) that tracking accuracy is

better in the n=2 targets case when velocities are predictable. They do not find the benefit

of predictable velocities for tracking accuracy in the n=4 targets case. Unfortunately, n=2

and n=4 are the only two cases they considered. Furthermore, they do not vary the

predictability of velocities. Our model predicts that the longer the velocity information of

a particular target is usable, the more beneficial is the unitary processing. Suppose the

velocity information changes faster than the rate at which unitary processing can choose

which attended location to process. In that case, the velocity information will not be

helpful.

The unitary processing allows the computation of velocity through the positions of the

objects at two points in time. This information is then used to estimate the next location

whenever the location being updated is the same as the location that is a part of the unitary

processing. A attended location (i, j) is part of the unitary processing if ut+1 = (i, j) (see

Equation 5.1). In this case, the nearest-object-location search begins from that location.

For other attended locations that are not part of the unitary processing, only a simple

nearest-object-location is used starting from the attended location itself, without relying

on any velocity information. The nearest-object-location algorithm is elaborated in the

next section.

Overall, with the unitary processing, whenever the location that is being updated is the

same as the location that is a part of the unitary processing (indicated by the condition

ut+1 = (i, j) in Equation 5.1), then because the unitary processing allows the computation

of velocity through the positions of the objects at two time points, this information is then

used to estimate the next location and the nearest-object-location search begins from that

location. For other attended locations which are not a part of the unitary processing, only

a simple nearest-object-location is used starting at that attended location itself without

relying on any velocity information. This process is elaborated in the next section.
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5.1.4 MOTUAF Attention Updates

We assume sequential updates for each of the attended locations in a manner determined

by their crowding. According to the discussion in the previous section, this means that

the most crowded location gets the update. This update may or may not happen due to

the unitary process itself.

Recall that Pylyshyn and Storm (1988) had shown that a serial tracking algorithm based

on a spotlight of attention moving between the objects at finite speeds could not account

for the tracking accuracy on the task of tracking multiple identical objects. But, they

did not rule out the case of quantal updates. Egeth and Yantis (1997) provides evidence

that the movement of attention is quantal rather than analog, as well as that the RTs

involved in the supposedly-parallel processing of multiple stimuli are additive rather than

subadditive (and therefore the supposition of parallel processing is unwarranted). Serial

switching theory also naturally accounts for variation in temporal resolution of tracking

with the number of targets (Holcombe & Chen, 2013), as well as the increase in temporal

lags in tracking with the number of targets (Howard & Holcombe, 2008).

Thus, in every time step, only a single attended location is updated. So, the greater

the number of locations that need to be attended, the less frequent the updates to each

location; thereby, the tracking accuracy with an increasing number of targets is worse.

1. We note that an attended location ati corresponds to the exact location of some

object only immediately after an update at time t caused it to be non-zero.

2. The frequency of updates of the attended locations is denoted by the parameter floc.

Suppose the next update corresponding to at
′
i = ati happens at time t′, so that at

′+1
i

once again corresponds to some object.

3. At time t′, the attended location at
′
i = ati may no longer correspond to an object,

since during the time from t to t′, the object would have moved from the location ati

to a new location l. While updating at
′
i = ati to at

′+1
i at time t′,

(a) Suppose at
′
i is different from the location in the unitary processing; that is,

suppose at
′
i ̸= ut

′
. Then the model finds the object nearest to at

′
i . To do so, it

looks for a location occupied by some object with increasing distance from at
′
i ;

thus, it avoids considering all the objects on display to find the nearest object.

This local search is also characterized by another parameter called the nearest

object bound nob since it is unreasonable to assume that recovering the object

could work if they have moved too far away from the attended locations. The
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search is aborted, and the location is no longer stored if no object is found

within a distance of nob from at
′
i .

(b) On the other hand, if at
′
i = ut

′
, then instead of finding the nearest object in the

vicinity of at
′
i , the model finds the nearest object in the vicinity of at

′
i +(ut

′−vt
′
)

strictly following the method described in the previous sub-step.

4. Suppose this new location where some object is present is l′. Then, the update is

performed so that at
′+1
i = l′ holds. In general, l′ may not be the same as l. Suppose

the object has moved predictably (unitary system processing) or has not moved much

(non-unitary system processing). In that case, l′ will more likely be the same as l,

and in these cases the model will not lose track of the target; but otherwise, the

locations l and l′ will be different and correspond to different objects. According to

our model then, this is how tracking errors occur.

5.2 Reproducing earlier MOT results

As Srivastava and Vul (2016) point out, explaining the degradation of accuracy with an

increase in the number of targets is the stiffest challenge for computational MOT models.

In this section, we show how MOTUAF successfully reproduces this trend across in silico

reproductions of four different experiments, PS1988 (Pylyshyn & Storm, 1988), AF2007

(Alvarez & Franconeri, 2007), FR2008 (Franconeri et al., 2008) and SV2016 (Srivastava

& Vul, 2016).
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5.2.1 Methods

In our simulations, the size of the retinotopic grid map of the model equals the size of the

MOT window on the display (in pixels). Indeed, the amount of information is limited by

the MOT window - in terms of its resolution and the refresh rate; any model based on a

retinotopic grid cannot use a resolution exceeding that of the display.

We use two kinds of dynamics depending on the characteristics of the experiments: con-

stant speed dynamics and Ornstein-Uhlenbeck dynamics. For each of the two dynamics,

we also outline the relationship between the parameters usually reported in the MOT liter-

ature and those required for simulating an equivalent environment in a computer program.

We achieve this by equating the average duration an object takes to travel from one end

of the MOT window to another in the experimental setting and our simulation. In both

cases, the only information the model receives is a grid map indicating the instantaneous

locations of the objects. It does not have any direct access to the velocity information or

the correspondence information.

Constant Speed Dynamics The first kind of dynamic is based on Alvarez and Fran-

coneri (2007) wherein objects move at constant speeds, repelling each other if they come

within a certain minimum distance of each other or the walls. Similar kinds of dynam-

ics have been stated in Franconeri et al. (2008). In particular, to identify the dynamics

of a particular object for the next time step, we identify all the objects and walls that

are within a certain minimum distance from that object. For each such wall or object,

we perform a component-wise (x-component and y-component) sum of the inverse-square

distances to determine the net direction of repulsion. This net direction of repulsion forms

the direction of the object at the next time step. That is, for an object at (xi, yi) moving

at speed σ in direction θ (angle with respect to the x-axis), its new direction of motion is

given by

rxnet =
∑
j ̸=i

xi − xj√
(xi − xj)2 + (yi − yj)2

rynet =
∑
j ̸=i

yi − yj√
(xi − xj)2 + (yi − yj)2

θ′ = arctan(rynet, rxnet)



Chapter 5. Computational Modeling 35

where j varies over all the objects and walls within a certain minimum distance of the

object at (xi, yi). For walls, we consider the perpendicular distance from the wall.

By equating the time it takes for an object to cross from one side of the display to another

in the experiment vs the simulation, we obtain

θ

d
=

D

ησD
s

Here,

• θ degrees is the angle subtended by the MOT window

• d degrees per second is the average speed of the object

• D is the actual width of the grid on the display

• η is the number of simulation updates to be carried out per second

• σ is the speed of the object in pixels per second in the simulation

• s is the side of the grid (in pixels)

Solving for σ, one obtains

σ =
s · d
η · θ

(5.4)

Ornstein-Uhlenbeck Dynamics The second kind of dynamics is from Vul et al. (2009)

and Srivastava and Vul (2016). In this, objects move according to Ornstein-Uhlenbeck

dynamics with

xt = xt−1 + vt

vt = λvt−1 − kxt−1 + wt

wt ∼ N(0, σ)

The y components are given similarly. Following the same notation as Vul et al. (2009),

we set the spring constant parameter to k = 0.0005 and the inertia parameter λ = 0.9

unless stated otherwise. The motion dynamics described in Pylyshyn and Storm (1988)

involves (i) a change in speed and direction of the objects every few hundred milliseconds

(ii) a restriction on objects to always stay a certain minimum distance away from each



Chapter 5. Computational Modeling 36

other. We achieve similar dynamics by relying on the Ornstein-Uhlenbeck dynamics with

an additional constraint. This constraint lets objects change velocities as required by the

Ornstein-Uhlenbeck dynamics. However, their positions change only if the objects remain

a certain minimum distance away from each other after the change.

The relation between the empirical and simulation parameters is similar to the one ob-

tained for constant speed dynamics, but with a factor of 1.8 thrown in. We noted that for

k = 0.0005 and λ = 0.9, one update following unconstrained Ornstein-Uhlenbeck dynamics

covered an average of 1.8σ pixels. Thus, we have2:

θ

d
=

D

1.8ησD
s

Solving for σ, one obtains

σ = 0.555× s · d
η · θ

(5.5)

5.2.2 Results

For purposes of tracking, floc, nob, ce, and fu constitute the free parameters of the model.

The free parameters of the environment and simulations include the grid size, σ, MOT

simulation update rate, and the total number of simulation updates carried out (or equiv-

alently, the number of time steps).

Figure 5.2 summarizes MOTUAF’s behavior vis-a-vis data from all the four experiments

we evaluated. Table 5.1 enumerates the experiment-specific parameters and free param-

eter values used to produce these results. MOTUAF, with only three free parameters,

successfully reproduces the trends seen in all four experiments.

Errors vs. number of targets for a particular average speed Empirical research

into multiple object tracking began with Pylyshyn and Storm (1988). They asked partic-

ipants to detect flashes occurring on target objects and measured the error rates of this

detection. A successful detection of the flash indicated successful tracking, while a failed

2Note that the σ in the two dynamics mean slightly different things. In constant speed dynamics, σ is
the constant speed in pixels per second at which the object is moving. In contrast, in ornstein-uhlenbeck
dynamics, σ is the standard deviation of a gaussian that determines how much the speed changes in that
time step.
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detection indicated an error in tracking. In Figure 5.2 (left), we reproduce the pattern of

percentage error rates for tracking the number of targets varying from 1 to 5, as measured

by Pylyshyn and Storm (1988). This uses the Ornstein-Uhlenbeck dynamics with an ad-

ditional constraint that objects never get close to each other. The detailed experimental

and simulation parameter values are given in Table 5.1.

Object speed thresholds for a particular accuracy vs. number of targets In

Alvarez and Franconeri (2007) and Srivastava and Vul (2016), the authors varied the speed

of the objects to find the maximum speed at which the tracking accuracy of the subjects

reached a predetermined threshold. This calibration was done for the number of targets

varying from 1 to 8 in Alvarez and Franconeri (2007) and 1 to 6 in Srivastava and Vul

(2016). In their tasks, a target or a distractor became visually distinctive with equal

probability at the end of a trial. Subjects had to indicate whether this visually distinctive

object was a target or a distractor. The accuracy of these responses across many trials

was dubbed as tracking accuracy. Our model attempts to reproduce these patterns in

Figure 5.2 (center). The model’s speed threshold is close to humans for the data from

Alvarez and Franconeri (2007), who always kept objects a certain minimum distance away

from each other. But, the model’s speed threshold could not reach human performance

for 2 or more targets for the data from Srivastava and Vul (2016), who allowed objects to

overlap. Investigating this discrepancy requires more empirical work.

Tracking accuracy vs. object speed in scene-widths per second One might

expect that, when object crowding is controlled, tracking capacities would depend on

the objective speed of the objects or at least on the angular speed of the objects at the

retina. In contrast, Franconeri et al. (2008) present an interesting finding that the tracking

accuracies for the same object speed on small and large displays are very similar when the

object speed is measured in scene-widths per second. An object speed of 1 scene width per

second means that if the object were allowed to move freely without changing direction,

it would move from one end of the MOT window to another once in 1 second. A speed

of 1.25 scene widths means that the object will cover 1.25 times the width of the MOT

window in 1 second; a speed of 0.5 scene widths means it will cover 0.5 times the width.

The small display subtended an angle of 20.5◦ × 9.1◦ at the retina, while the large display

subtended an angle of 82◦ × 36.4◦. Figure 5.2 (right) shows our model reproducing these

patterns. Nevertheless, the minimum distance between the objects scaled with the display

size, and their findings are consistent with the attentional resolution capacities measured

by (Intriligator & Cavanagh, 2001).
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Figure 5.2: Reproducing previous results in Multiple Object Tracking. Left: Compar-
ison of percentage errors with increasing number of targets corresponding with a fixed
average speed of MOTUAF plotted against data from Pylyshyn and Storm (1988). Cen-
ter: Velocity threshold vs. number of targets patterns for MOTUAF plotted against data
from AF2007 (Alvarez & Franconeri, 2007) and NS2016 (Srivastava & Vul, 2016). Right:
Comparing our model against the human data in experiment 1 of Franconeri et al. (2008).
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targets, σ = 1.25) with increasing trial duration. Left: Predictions from our modeling
assuming fcorr = 0. Center: Replotted results from Pylyshyn (2004). Right: Predictions
from a model based on indexes aka fcorr = 1. Our model only captures the notion of an

ID without distinguishing between Corners vs Names.

5.3 Multiple identity tracking with MOTUAF

Given that at time t, the system only has access to the locations at1, ..., a
t
n but not the

locations at other points of time, the information it has so far is insufficient to make

conclusions about the target IDs.

To keep track of IDs, we therefore propose that at time t, there also exists a separate

sequence qt1, ..., q
t
n of IDs. One possible strategy to maintain such a sequence is to keep

reciting the sequence. To match objects to IDs, one can go over the attended objects in

some spatial sequence while reciting their IDs in that same sequence.

One particular sort order (but not the only one) could be to sort the locations in the

non-decreasing order of x-and-y coordinates. With this, at the start of the trial at time

t0, the sequence of attended locations is monotonic in their x-and-y coordinates, so that
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for m < n, at0m ≡ (xt0m, yt0m) and at0n ≡ (xt0n , y
t0
n ) are such that (xt0m < xt0n ) or (x

t0
m = xt0n and

yt0m ≤ yt0n ). Given this order of at01 , ..., a
t0
n , the system now has the ID of the object at at0k

in qt0k for k ∈ 1, ..., n, and it is through this correspondence that the system can infer the

IDs of the objects.

At the end of the trial at time te, the system again sorts the sequence of attended locations

ate1 , ..., a
te
n using the same sorting-rule that it had used at the start of the trial, in our

particular example, this is non-decreasing order of x-and-y coordinates. It then assigns

the ID qtek to the object that is at or nearest the location atek .

The strong assumption here is that the sequence of IDs is never updated. In the general

case, and as one’s intuition would suggest, it should be possible to update the ID sequence,

aka do a ”correspondence update”, especially if the objects move sufficiently slowly. This

update can be characterized by an additional parameter for the model, which we call the

frequency of correspondence updates fcorr. The question of whether or not a correspon-

dence update takes place at any particular time step is relevant only if a location update

has taken place. So, as opposed to the frequency of location updates floc being an absolute

frequency, fcorr can be understood as a frequency relative to floc. Thus, 0 ≤ fcorr ≤ 1.

When fcorr = 1, that is, when correspondence updates occur whenever location updates

occur, MOTUAF (like FINST-based models) predicts ID accuracy being identical to track-

ing accuracy across any trial duration (see Figure 5.3, right). Setting fcorr to less extreme

values produces a disparity between tracking and ID accuracy, as anticipated in the liter-

ature (Pylyshyn, 2004). For example, fcorr = 0 reproduces the empirical results seen in

Pylyshyn (2004) (see Figure 5.3, center) very precisely (see Figure 5.3, left).

5.4 Model-based analysis of experiment 1

We minimized the mean-square error (MSE) between the tracking accuracy of humans

and MOTUAF for floc ranging from 6 to 45Hz, and for nob varying from 20 to 60.

For lowest MSE (Figure 5.4, left), floc = 30Hz, nob = 52, MSE = 2.0× 10−4, r2 = 0.980.

Comparing the model’s ID accuracy with human ID accuracy (Figure 5.4, left-dotted),

one notes that fcorr = 0 results in the model’s ID accuracy being worse than the human

ID accuracy (MSE = 5.8 × 10−3, r2 = 0.975). Calculating the MSE scores between the

model’s ID accuracy and human ID accuracy for different fcorr yielded a lowest MSE for

fcorr = 0.4 (MSE = 1.6× 10−3, r2 = 0.971) (Figure 5.4, left-solid).
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Figure 5.4: Left: Comparison of MOTUAF’s tracking and ID accuracy against human
data after fitting MOTUAF’s tracking accuracy to the human data, with differing as-
sumptions about the ID updates (i) ID updates taking place always whenever location
updates take place (ii) ID updates taking place some of the times (iii) no ID updates tak-
ing place ever as with the Center figure. Errorbars represent 1 SEM. Right: Comparison
of MOMIT’s Tracking and ID accuracy against human data for the lowest MSE run.

However, for the particular correspondence-update heuristic we employed, even with fcorr =

0.4, the human ID accuracy consistently exceeds the model’s ID accuracy when the number

of targets is at most four. Investigating the existence, characteristics, and the disruption

of the correspondence-update heuristic will require more work.

We also compare MOTUAF’s performance against MOMIT (Oksama & Hyönä, 2008), an

index-based model designed for tracking visually distinct objects; however, it can track vi-

sually identical objects by suppressing its corrective attention shift mechanism. Figure 5.4

(right) shows MOMIT’s fit to our data. Despite a still-reasonable (r2 = 0.877) fit for

tracking accuracy, we note that MOMIT is intrinsically predisposed to align ID accuracy

with tracking accuracy as with the fcorr = 1 case (see Figure 5.4, left-dashed).

5.5 Predictions and Limitations

The computational model of MOTUAF we discussed successfully replicated several em-

pirical results. However, it required certain assumptions, and these assumptions make

testable predictions. In addition, some more phenomena are still left unexplained. Below,

we discuss both these issues.
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5.5.1 Velocity-based constraints

Howe and Holcombe (2012) presented a nuanced finding that velocity information is used

for tracking in the n = 2 targets case but not in the n=4 targets case. Our modeling work

builds upon this and suggests the limits under which velocity information can be used. This

can be explored further. In particular, let fv be the frequency at which velocity changes

and f∗
v be the limiting frequency at which velocity information still benefits tracking. Then,

our model predicts that f∗
v should decrease with an increase in the number of targets. This

can be tested.

In trying to reproduce the results from Srivastava and Vul (2016) (Figure 5.2, center),

even though we were successful in achieving human-level performance in the single target

case, our model still falls short of human performance in cases involving more than a single

target. Moreover, the pattern of results (a linearly decreasing trend) is quite distinct from

both the model predictions as well as from the ones in Alvarez and Franconeri (2007)

(a logarithmically decreasing trend). Whether this is an experimental artifact, a result

of better response strategy3, a limitation of the model, or something else remains to be

identified.

In light of the results in Franconeri et al. (2012), Howe and Holcombe (2012), and Keane

and Pylyshyn (2006) discussed in the section on ”The involvement of velocities” while

describing the computational model MOTUAF, there indeed are strong constraints to the

use of velocity information in the case of multiple targets.

5.5.2 Temporal constraints

Verstraten et al. (2000) noted a temporal limit of about 5-8Hz on attentional tracking. A

similar limit of 7Hz has been noted by Holcombe and Chen (2013) for the single target

case. However, our model makes no space for accounting for these. The limit predicted

by our model using floc is as high as 30Hz.

Given the phi phenomena (Wertheimer, 1912), certainly, some visual processes occur at

this high a frequency. What, then, could explain how the 5-8Hz frequencies arise?

3A naive response strategy would assume that if a target gets confused with a distractor when they cross
each other, the participant will only track one of them. However, the participant can keep track of both of
them, and then at the end of the trial, if the query distractor is neither of them, then the participant can
confidently answer ’No’.
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One way to explain this could be to analyze how errors can arise in the tasks employed

in Holcombe and Chen (2013). In these tasks, tracking is achieved through attention,

and thus, targets are what one attends to; one notes that one would make an error if

the distractor appears too soon after the target. Suppose the distractor appears too soon

after the target. In that case, attention captures the distractor too. We propose that this

unwarranted capture is the cause of tracking errors. Specifically, an error occurs if the

distractor appears within 1/f seconds after the target, with the tracking limit being f Hz.

These results can be explained if tracking can be mechanized as follows: Targets are

what one attends to. Once a target has moved (changed its property), attention gets

redeployed to capture these changed features of the objects. These changed features serve

as exogenous cues for attentional deployment. According to our computational modeling

work, floc corresponds to this rate of attentional deployment, expected to be as high

as 30Hz. However, alongside the deployment of attention to the new feature, attention

also gets disengaged from the previous feature. Suppose a proto-object with the not-yet-

disengaged feature were to appear before the attention is disengaged. In that case, that

proto-object will likely be captured by attention, leading to tracking errors. If, on the

other hand, the proto-object appears after attention has been disengaged, say, during the

attentional blink, then there should not be any tracking errors.

The attentional blink period has been suggested to last from 200 to 500 ms after the first

target (Shapiro et al., 1997). While tracking a single target, if a distractor appears at

the target location during the attentional blink, then tracking errors should not occur. In

contrast, if the distractor were to appear at the target location during lag-1 sparing, then

a tracking error will occur.

However, while this can explain the n = 1 target case, as suggested by Holcombe and

Chen (2013), investigating how these phenomena vary for multiple locations remains an

open question.

5.5.3 A bimodal distribution of object position lags

Howard and Holcombe (2008) and Howard et al. (2011) reported a dissociation between the

reported locations of the objects and the actual object locations, with the former lagging

behind the latter. We have assumed the involvement of a unitary system in tracking. The

lag between the represented object locations (attended location) and the actual object

locations should be close to zero if the update of the attended location took place via the

unitary system. For the other attended locations, the lags should increase with an increase



Chapter 5. Computational Modeling 43

in the number of targets. Thus, we expect a bimodal distribution of lags: one set of lags

close to zero, and another set of lags which increase with the increase in the number of

targets.

5.5.4 The most crowded locations are tracked better but the second

most crowded locations are not

Srivastava and Vul (2016) reported a counter-intuitive finding that crowded locations are

tracked better. We predict that the better tracking of the crowded locations is due to

the involvement of the unitary system. However, the unitary system, by definition, can

only update a single location. If other locations crowd simultaneously, then it will not

be tracked better than the non-crowded location. More specifically, we expect that the

second most crowded locations will not be tracked better than the non-crowded locations.

5.5.5 A time lag for attention to become object-based that increases

with increasing number of objects

Building on the findings from Howard and Holcombe (2008) and Howard et al. (2011),

suppose that the mechanism by which attended locations follow the objects is the same

as object-based attention. In that case, we predict: (1) There is a time lag for attention

to become object based. (2) This lag increases with an increasing number of attended

objects.
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Implications for Visual Indexing

Theory explanations for MOT

An index-less approach to tracking an object uses representations1 of the object being

tracked (Figure 1.1). A part of the problem with the index-based account is that it tends

to push the exact ways by which tracking takes place into the background by formulating

tracking as a primitive process. Indeed, in the general case, tracking a visual element by

relying on its representation is hard. There is no denying how effortless we find tracking

in many cases. Yet, just because we find it effortless, there is no reason for the task to

be done ”simply” - the history of artificial intelligence is replete with problems that we

once thought were easy but which, upon investigation, have demonstrated themselves to

be hard2.

The properties of an object may change without a change in its identity (e.g. ”It’s a bird,

it’s a plane... no, it’s Superman!”). An indexing-based account relies on indexes as the

non-conceptual, aka property-less pointers to each such object. Our account, that does

not use indexes, has to rely on the properties of the objects. The criticality, however, lies

in what kinds of properties are used. Our account relies on the existence of their being

some property (conceptual or non-conceptual) that can help track the object at each time

step. Each time step may have a different property that gets used for tracking.

1It is still too early to comment on the conceptual or non-conceptual character of these representations.
2Even the recent ”successes” rely on unfathomably big data and energy consumption that a human

child does not require in order to learn language or make sense of their visual sense data.

44
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Pylyshyn (2000) (and also philosophers like Perry (1979)) have suggested that picking

out objects in our environments needs to be sometimes based on non-conceptual repre-

sentations. Our proposal does not contradict the role of indexicals and demonstrative

references in the taking of an action. Our work, however, does suggest that indexicals may

not continue to be bound to their referents even as the properties of the referents change

over time. If the properties of the referents change, a cognitive process must update that

link - and not just a visual or auditory or a modality-specific process. The index-based

explanation for MOT requires that the indexes remain bound to their referents over some

variation in the properties of the referents. We suggest that the amount of change in the

referents is much smaller than the amount of change that a tracking task involves. If this

is the case, then Visual Indexing Theory can naturally continue to, for instance, explain

the phenomena of subitizing (Trick & Pylyshyn, 1994) without any effect from our work.
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Conclusion

Our work has broadly involved investigating the theoretical position that indexes are not

necessary for multiple object tracking. To this end, we conducted two experiments extend-

ing the observations made by Pylyshyn (2004) about the dissociation between tracking and

ID accuracy, with results supportive of this theoretical position.

We also computationally investigated a model of index-free multiple object tracking built

according to this outline, and found that at least one index is necessary for such tracking.

By reproducing a number of previous empirical results with this model, we also showed

that a single index is sufficient for multiple object tracking. Our empirical results are

also consistent with the existence of no more than 2 incorruptible indexes, but even 4-

5 corruptible indexes. However, we agree with Scholl (2009) that assuming indexing to

be corruptible deprives indexes of the critical capacity they were supposed to provide:

providing a correspondence link between elements at the current point of time and the

elements at the previous point of time.

Thus, we suggest that the empirical success of MOTUAF demonstrates that it is possible

to explain human MOT behavior without requiring the use of incorruptible pre-attentive

indexes. In the literature, indexes are only needed if we assume that solving the correspon-

dence problem is a prerequisite to performing the MOT task (Luo et al., 2021; Pylyshyn,

2004). We show that MOT is possible without computationally maintaining one index

per object. This opens up the possibility of producing fast multiple object tracking al-

gorithms scalable to large sets of objects, particularly in combination with neuromorphic

vision sensors (Pantho et al., 2018; van De Burgt et al., 2018), as well as the possibility

of entertaining embodied cognition proposals requiring substantial metacognitive insight

into attention allocation at the level of saccadic planning (Chandrasekharan et al., 2015).
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Appendix/Supporting Information

The data and code for the experiments and computational modeling may be found at this

project’s OSF link.
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