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Abstract

Video game playing is an extremely structured domain where
algorithmic decision-making can be tested without adverse
real-world consequences. While prevailing methods rely on
image inputs to avoid the problem of hand-crafting state space
representations, this approach systematically diverges from the
way humans actually learn to play games. In this paper, we
design object-based input representations that generalize well
across a number of video games. Using these representations,
we evaluate an agent’s ability to learn games similar to an in-
fant - with limited world experience, employing simple induc-
tive biases derived from intuitive representations of physics
from the real world. Using such biases, we construct an ob-
ject category representation to be used by a Q-learning algo-
rithm and assess how well it learns to play multiple games
based on observed object affordances. Our results suggest that
a human-like object interaction setup capably learns to play
several video games, and demonstrates superior generalizabil-
ity, particularly for unfamiliar objects. Further exploring such
methods will allow machines to learn in a human-centric way,
thus incorporating more human-like learning benefits.

Keywords: Category Learning; Object-based Reinforcement
Learning; Generalization; Inductive priors; Intuitive physics

Introduction
Deep reinforcement learning (DRL) algorithms have shown
professional to superhuman competency in gaming envi-
ronments such as MuJoCo, and Atari (Shakya, Pillai, &
Chakrabarty, 2023; Goodfellow, Shlens, & Szegedy, 2014).
But, at the same time, like other black box deep learning
models, they can break with even slight modifications of the
environment (Justesen et al., 2018; Goodfellow et al., 2014).

Figure 1: Simple Variations, Crippling Results - Deep Learn-
ing Models break even with a slight variation of the environ-
ment (Right image - randomized enemy positions).

For example, to contrast human and machine-level learn-
ing, Figure 1 shows two variants of the space invaders game
we tested. DQN was trained on the basic version on the left

for two million iterations and tested on the variant with par-
tially randomized enemy positions on the right. The base
variant’s average score was 510, whereas the right variant
could score only 280; both averaged over ten runs. A ran-
dom agent also reached an average score of 270. Thus, even
with this simple modification, a Deep Reinforcement Learn-
ing (DRL) model may fail. On the contrary, humans play
through such variants with ease.

Even though DRL is setting new records on the Atari
benchmarks, defeating human players in live settings, and
achieving superhuman scores on games (Hessel et al., 2018;
Mnih et al., 2015), they still fail at generalizing and transfer-
ring the learned knowledge to novel domains (Kansky et al.,
2017) - a task which humans do exceptionally well. We find
this a big issue in the recent Machine learning (ML) research
trends where the focus is increasingly shifting towards feed-
ing massive amounts of data to a black-box model, giving it
enough facility to memorize all the variations it could and
then breaking the previous benchmark results.

Thus, this paper focuses on techniques to make machines
learn in a more human-like fashion. The first distinction be-
tween the recent ML direction and the human way of learn-
ing is its input. DRL takes images as input which essentially
means that the whole world for them is a collection of pixels.
In contrast, when humans look at the world, they do not see
pixels; instead, they see objects. , which is the interest of the
works on object-based reinforcement learning.

Here also, we take a slightly different approach which we
find more interesting. Instead of working directly with the
objects and assuming their properties as given, we try to look
at the game world from a fresh perspective, somewhat similar
to the view of a child who does not come with an oversized
baggage of existing knowledge.

To this end, we try to learn game playing using common
human inductive biases. The broad idea is to incorporate
human-like learning trajectories in machines to test if they
could be made more closer to human behavior than the cur-
rent ML paradigms. With this line of work, we aim to lever-
age the same advantages humans show in generalization and
zero-shot transfer. For the existing model-free algorithms,
this is a difficult task because as soon as a new object be-
comes part of its input the algorithm sees pixel combinations
never seen before.

Developing an agent with human-like abilities is a long-
standing journey. This study evaluates and presents the fol-



lowing contributions as steps along this path. First, we try
to incorporate the thinking of a first-time player in game
playing using commonly agreeable inductive biases. Sec-
ond and more importantly, we bring in the idea of using ob-
ject categories instead of direct object-based inputs. We test
our approach using a simple Q-learning agent (Watkins &
Dayan, 1992) against DQN (Mnih et al., 2015) to contrast hu-
man and machine-like learning. We also show that by using
such a paradigm, we can see generalization trends practically
unattainable by resource-hungry pixel-based mechanistic ML
agents.

Like many deep learning methods, these algorithms work
as a black box (Kumar, Dasgupta, Daw, Cohen, & Griffiths,
2023), often struggling with inexplicability and poor sam-
ple efficiency(Mohan, Zhang, & Lindauer, 2023). More so,
akin to their counterparts in deep learning (Goodfellow et al.,
2014), they are susceptible to errors with even slight modifi-
cations of features (Lu, Shahn, Sow, Doshi-Velez, & Li-wei,
2020). On the contrary, humans, against AI, despite being
defeated on many of the gaming benchmarks, do much better
at learning task abstractions to reuse the acquired knowledge
(Kansky et al., 2017). Humans demonstrate superior learn-
ing trajectories, learning games quickly and also performing
well on modifications (Tsividis, Pouncy, Xu, Tenenbaum, &
Gershman, 2017).

Theory-based RL is a form of Model-based method where
the model is defined in terms of rich ontological symbolic
representations pertaining to physical objects, their relations,
and interactions. Using various intuitive theories, theory-
based RL explicitly tries to incorporate human ways of learn-
ing (Tsividis et al., 2021). Such intuitive theories stem from
a core knowledge representation of the world visible even in
infants who can segregate the visual input into ontological
structures such as objects, goals, and physics (Baillargeon,
2004; Spelke, 1990; Spelke & Kinzler, 2007; Csibra, 2008).
Humans also have been shown to make internal models using
theory representation(Tomov, Tsividis, Pouncy, Tenenbaum,
& Gershman, 2023). Similarly, semantic and syntactic bi-
ases, such as those used in theory-based RL, show a strong
resemblance to human-like learning (Pouncy & Gershman,
2022). Humans show a wide range of flexibility in adapting
to variations within the same task domain. As such, (Pouncy,
Tsividis, & Gershman, 2021) have shown evidence that such
flexibility, a hallmark of human intelligence, can arise by rep-
resentations composed of objects and interactions within a
model-based framework. Thus, theory-based RL has shown
a promising resemblance to human-like learning, But being
highly dependent on a strong model of the environment, it
has significant practical limitations.

To make sense of these observations, humans utilize vari-
ous priors that help them explore efficiently.Dubey, Agrawal,
Pathak, Griffiths, and Efros (2018) explore and quantify such
priors for video gaming tasks. Our work builds upon such
principles to learn a working structure of the world.

Tsividis et al. (2021) worked on the idea of making ma-

chines learn more like humans, starting from early childhood
using strong theories about the working of the world. We
take a slightly different approach and learn the affordances
from object specifications rather than using pre-defined rules
of interactions. Much like them, we also levy inductive bi-
ases for this task, which we understand to be a product of
evolution, such as agent identification, threat perception, and
goal attribution. In a related setting, using program induction,
Ellis et al. (2023) developed DreamCoder – growing learn-
ing capabilities from a child-like state. Similarly, Ding et al.
(2023) used language instructions and human demonstrations
to learn concepts, acting like a baby learning from environ-
mental interactions

We explore this learning task by leveraging inductive bi-
ases and agent-object interactions with a focus on categoriza-
tion, complementing, and yet differentiating with previous
works.

Spelke (1990) reason that infants perceive objects based
on perceptual units moving together, moving separately, in-
teracting on contact, and maintaining their shapes and sizes
while in motion. We leverage these interactions to learn fun-
damental affordances such as avoid, touch, and block through
our Reinforcement Learning (RL) agent’s actions trained ex-
clusively on object-specific properties that are interpretable
and in alignment with concepts of infant learning.

Thus, in this domain, akin to the work of Ding et al. (2023)
in the space of natural languages, we try to answer a simple
question - can we enable an agent to learn like a small child,
testing the hypothesis in game settings. Humans look at the
world in terms of objects and their interactions; This is one
of their core knowledge (Spelke & Kinzler, 2007). Draw-
ing on this insight, we shape the task of object reasoning
around basic principles of core knowledge and show that we
can achieve game-playing in a more cognitive and less mech-
anistic manner. Specifically, instead of just looking at objects
in isolation, we bring in the concept of meaningful object cat-
egories. This notion is inspired from compelling evidence on
humans learning object categories in specific brain regions
(Kriegeskorte et al., 2008; DiCarlo, Zoccolan, & Rust, 2012).
Then, we build upon this representation to learn category-
level affordances and test our hypothesis on multiple tasks
considered easy for humans but proven challenging for ma-
chines.

Learning How to Play
We look at the game screen from the view of a fresh player
who is coming with a very minimal baggage of experience.
Such players would see certain entities stand out on the screen
by virtue of their specific forms, colors, or movements but
would not know the affordances for the different objects -
a task necessary to accomplish their desire to win (Csibra,
2008). Thus, the first step in this learning process would be
detecting what we control on the screen, i.e., the agent rep-
resenting the player in the game. Agent detection is one of
the key ideas in human-like learning and also a differentia-



tor from large-scale pattern matching in machine-like learn-
ing (De Freitas et al., 2023). After knowing the where and
how of the agent, the next step would be to devise a strategy
to move about in the world, necessitating knowledge of at
least a minimal set of affordances associated with other game
entities, for which we devise a set of representative object
categories and learn simple affordances associated with each
category. Refer to Figure 2 for an overview of the complete
pipeline.
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Figure 2: Flowchart of the whole pipeline

Categories
Theory-based Reinforcement Learning methods, even if
showing human-like learning traits, use an object-interaction
definition known a priori and focus on exploration and plan-
ning with a very strong world understanding (Tsividis et al.,
2021). We take a different route here. Rather than work-
ing with the objects directly, we focus on relevant object cat-
egories based on a primitive evolutionary understanding of
object affordances. Such affordances are understood either
from the past or the current game experience. The game cat-
egories are motivated by a general sense of perception where
we identify objects as static or moving and learn from experi-
ence if they are dangerous or useful. Humans also learn such
object categories having similar affordances over isolated en-
tities and tend to generalize strategies from previously learned

knowledge to unseen situations (Perfors & Tenenbaum, 2009;
Medin, Wattenmaker, & Hampson, 1987).

For all our games, we utilize only these five simple cate-
gories motivated by the affordances they could provide:

• Agent - Agent is detected using a minimal set of inductive
biases depending upon the complexity of the environment.

• Static objects - This category involves objects whose po-
sition does not change in consecutive frames. In simple
games, they could be harmless and provide secondary ben-
efits like protection from bullets. In a more complicated
setting, they could be collectable objects necessary to win
the game.

• Moving-Good objects - If an object is displaced from its
previously occupied position, we classify it as moving.
They are the interesting and primary interacting entities
apart from the agent. The advantageous category consti-
tutes those objects that give positive rewards on touching.
From a game perspective, such objects would be pickables
such as keys or eatables such as food.

• Moving-Bad objects - Such objects are the prime obstacle
in the game. They give negative rewards or kill the agent
on touching. As we perceive a threat and move away, the
primary affordance associated with this class is to avoid
them.

• Agent objects - Objects spawned by the agent, like agent
bullets, constitute this category. The idea behind detecting
these objects is that they appear very close to the agent
immediately after a key press.

After a player learns these categories, downstream classifi-
cation becomes instantaneous. Similar to humans, we store
characteristic properties of these categories, such as color.
Once the colors are identified, new objects can be immedi-
ately assigned their respective categories.

Identifying the Agent
As discussed in the previous section, of all object categories,
the agent is of primal importance and requires special atten-
tion. By analyzing different games and life settings, we pro-
pose a set of inductive biases to mimic how a new player
would detect the agent in the game.

Inductive biases
Even though identifying objects and the associated proper-
ties occurs concurrently and continuously, we try to solve the
agent identification problem by utilizing as little information
as possible. Thus, we initialize use only standalone proper-
ties and then integrate action responses as the environments
get more complicated.

Inductive Bias 1 - Uniqueness. This property suggests
that the agent is expected to have a unique form. On the game
screen, if two objects appear visually similar, they are less
likely to be the agent.



Inductive Bias 2 - Permanence. From a gaming perspec-
tive, ”permanence” refers to the sustained existence of an en-
tity on a game screen. As the game world is centered around
the agent, other objects would enter and exit the world, but
the agent is expected to persist at all times unless killed by an
undesirable interaction.

Inductive Bias 3 - Action-Object Motion binding. The
agent is meant for action. As a final conclusive test, we would
assess all the objects for their mobility with different key
presses, the intent being that the agent, as an active princi-
ple in the game, would be dynamic rather than passive unless
killed by an undesirable interaction. Moreover, as a specific
key is pressed repeatedly, only the agent is expected to consis-
tently manifest a repeated action, as outlined by (De Freitas
et al., 2023).

Agent Action Key Bindings
This involves learning the activities an agent does in re-
sponse to different key presses. It is a form of reinforcement
where the player presses keys to observe the agent’s behav-
ior. Through repeated iterations of this exercise, the player
gradually discerns the mapping of each action to a specific
outcome on the screen. We apply a similar principle by tak-
ing random actions in our games and observing the changes
in the agent’s position to assess action-key bindings. Thus,
evaluating movement action key bindings is straightforward.
For bullet firing, we check for the generation of a new ob-
ject near the agent immediately after a key is pressed. If this
occurrence repeats until a specified threshold, we assign the
key’s affordance as ”Fire.”

Implementations
Since object detection is a well-researched field, for our tests,
we start with a preexisting list of objects. Then, we catego-
rize these objects into the previously mentioned groups based
solely on their bounding box and color.

Incorporating the above object definitions, we try to learn
game playing using the Q learning algorithm (Watkins &
Dayan, 1992). For Q-learning to work, we need to process
our object definitions to construct a state representation that
is concise and, at the same time, rich enough for the agent to
have sufficient winning information. All the games are fed
with the parsed object category information, and we build a
state relevant to each game setting. Specifically, we take 2k+1
relative orientation bits, two bits to denote the left and right
boundary, and 1 bit to mark the presence of agent bullet if ap-
plicable to the game. The 2k+1 orientation bits represent the
time it takes for the agent to reach each bit while stationed at
the kth bit and store the time it would take for a moving object
to cover the horizontal distance from the agent.

GVGAI Games
We modify the MyAliens game from GVGAI (Perez-Liebana
et al., 2019) into two variants to test our hypotheses on
human-like learning.

MyAliens - variant 1 (MyAliensV1) In this game, the ob-
jective is to avoid getting hit by any moving object falling
from the top till timeout. All the moving objects kill the agent
on touching, so the agent has to learn to avoid them as long
as possible.

MyAliens -variant 2 (MyAliensV2) This game has two
types of moving objects - one giving positive rewards and
one killing the agent. The agent has to learn to collect five
positively rewarding objects before timeout to win the game .

Custom Games
Additionally, we also test two custom games to check our
hypothesis on more visually exciting games.

Roadrash - Car Driving In this game, the player car has
to avoid crashing into the incoming traffic cars. There are
only two categories present - agent and moving bad objects.
The vehicles can drive only in 4 lanes, making the game very
challenging under heavy traffic.

SpaceInvaders This game is based on the classic Atari
Space Invaders and has the same features with better visuals.
The enemies travel horizontally and then move a row down
while shooting bullets at the agent spaceship. The agent can
shoot only one bullet at a time.

Generalization Experiments
Our goal here is not to defeat a Deep Reinforcement learning
algorithm but to show that using a methodology like ours has
certain benefits that opens up new avenues for mimicking hu-
man learning characteristics. For all the tests, we train DQN
for 10e6 with linear exploration decay from 1 to 0.01.

First, we test our games to see their learning capacity com-
pared against a DQN agent for all four games. For this, we
plot the normalized average scores over 20 runs for model
vs. epoch, where epoch is defined as one game run loop. We
normalize the scores as follows

Normalized score =
actual score

maximum achievable score
MyAliensV1 has five levels with different placement of
spawn points for moving enemies with a maximum score of
50, +10 for winning each level, and -10 for losing. We test
MyAliensV2 for three levels, with a maximum achievable
score of 30. Apart from winning or losing ±10, the agent
also gets a reward of +1 for collecting a food item. The level
is won when ten such items are collected.

In Roadrash, the agent needs to survive for 300 steps. Hu-
mans, after learning how to play a game, would easily adapt
to slight variants of the game. SpaceInvaders has two levels
with a maximum achievable score of 1000, from +10 received
for killing each of the 50 enemy spaceships over the two lev-
els.

To test the generalized ability of our agent to mimic
human-like learning, we run the agent in different variations
of the games. For all such cases, we train the game only on
the base variant of the game.



Figure 3: Affordance-based Q learning vs. Image-based DQN Normalized Score per epoch plots. a) MyAliensV1 - DQN
is probably still exploring as it could not learn any valuable action. b)MyAliensV2 - Both algorithms found difficulty; Q-
learning still shows signs of learning, but DQN could not clear even the first levels for both variants of MyAliens. c)Roadrash
- Very stochastic game with many occasions where avoiding collision is impossible. Q-learning still does better than DQN.
d)SpaceInvaders - our algorithm easily learns gameplay using its object-based representation.

Table 1: Normalized score for DQN vs. our method averaged over 20 runs of the games. All the models are trained for 1 Million
epochs. SpaceInvaders 2 levels and a maximum achievable score of 1000. MyAliensV1 has five levels with a maximum score
of 50 and MyAliensV2 has three levels with a maximum score of 30. Roadrash ends if the agent can avoid collision for 300
steps, and the score is measured in the number of steps moved.

Modifications MyAliensV1 MyAliensV2 Roadrash Space Invaders
DQN Ours DQN Ours DQN Ours DQN Ours

Random Action - 0.20 - 0.33 0.27 0.27
Base-Variant - 0.08 0.80 - 0.23 0.57 0.45 0.50 0.51 1.0
Mod-Position - 0.20 0.74 - 0.27 0.47 NA NA 0.28 0.42
Mod-ColorSize - 0.20 0.80 - 0.27 0.57 0.40 0.48 0.31 1.0
Mod-Image NA NA NA NA 0.38 0.47 0.30 1.0

We explore three types of game variations:

• Mod-Position: Changes the default position of moving en-
emies.

• Mod-ColorSize: Alters the size and color of image objects.

• Mod-Image: Substitutes default game images.

GVGAI games do not allow modification of object size,
and all the objects within the game are made from unit-sized
colored rectangles. Thus, the Mod-Image variant is not appli-
cable as no images are loaded. In Roadrash, enemy cars are
spawned randomly. Therefore, the Mod-Position variant will
not make any difference in the game.

We train the DQN algorithm using a batch size 32 on each
game run loop with experience replay. The Q-Learning agent
is trained only once on each run on the latest experience.
Thus, even on the same level of epochs, DQN weights are
updated 32 times more than Q-Learning.

Results and Discussion
To test the efficacy of our category-level representations, we
run two kinds of tests. First, we compare DQN and our
method under varying training durations. Scores from the
trained models from different training epochs are plotted, and
we analyze the agent’s normalized score (Figure 3). One
Epoch is defined as one run of the game loop. Even though
Q-Learning updates 32 times less than DQN, it is able to learn

correct decisions quickly. We plot the results up to 0.5 million
epochs, equivalent to approximately 2 hours of gameplay at
60 frames per second, and in most cases, DQN did not show
any improvement owing to its sample inefficiency.

Our algorithm demonstrates strong performance in
MyAliensV1, successfully winning all five levels. In
SpaceInvaders also, it wins both the levels. However,
MyAliensV2 presents a more challenging scenario, requiring
the agent to distinguish between moving-good and moving-
bad categories and collect ten of the good ones before a time-
out to win the level. Here also, our method does well, but the
performance degrades as compared to MyAliensV1, primar-
ily because our agent has only a 9-bit state space representa-
tion, i.e., it can see nearest objects only within a range of four
units on both the left and right sides. Given that the moving-
good category is dispersed over a broader x-range of thirty
bits, the agent often struggles to locate the moving-good cate-
gory within its narrow field of vision. Consequently, the time
elapses before the agent can collect the required ten items,
impacting its overall performance in this more complex sce-
nario.

The escalating difficulty in subsequent levels, coupled with
a reduction in the number of moving-good spawn points, adds
to the complexity of the task. We tested a broader state rep-
resentation with 25 bits, but the learning became computa-
tionally intractable, and the agent struggled to learn mean-
ingful affordances. Nevertheless, even with a limited view,



our agent could clear the first two levels and failed after col-
lecting a few items from the moving-good category on the
third level in most runs (Table 1).

For Roadrash, even though our method does better, we do
not see substantial performance gain with training. The game
has four lanes, with enemies spawning stochastically in any
of them. Thus, in many cases, all four lanes get blocked, and a
crash becomes unavoidable. In other situations, avoiding ac-
cidents requires precise control because of the crowded struc-
ture of game objects. So, even a reasonably learned agent
could not perform very well in this game, and the perfor-
mance was more-or-less stagnant. Nonetheless, our algorithm
still fairs better against the DQN agent.

Our second set of comparisons focuses on the transferabil-
ity of the acquired knowledge. For deep learning algorithms,
object level alterations, such as changing object colors, can
have devastating consequences (Lake, Ullman, Tenenbaum,
& Gershman, 2017). On the other hand, humans can easily
manage such variations. Our results indicate that, unlike a
DQN agent, our category-based method exhibits no notable
deterioration, aligning more with human-level gameplay (Ta-
ble 1).

This is primarily because, at the category level, the state
representations remain relatively stable despite the above
generalization modifications of the games. Consequently, our
algorithm’s performance does not degrade with these varia-
tions. It’s noteworthy that both models in these comparisons
are trained for one million epochs. However, for MyAliensV1
and MyAliensV2, DQN is still in its exploration phase, ex-
hibiting minimal performance improvement, and the intro-
duced variations further degrade its performance. This is
particularly evident in SpaceInvaders, where the DQN agent
while displaying some learning traces in the base variant, re-
gresses to the level of a random agent when faced with vary-
ing input pixel combinations. As the Roadrash game is chal-
lenging from the start, there is little difference after making a
difficult game more difficult.

Among all the alterations, only SpaceInvaders Mod-
Position resulted in a substantial decline in Q-learning perfor-
mance. This is primarily due to position modifications creat-
ing new, and previously unseen, state representations. In this
setting, as the enemies get randomly arranged, some enemies
get placed too close to the agent. As such states are previously
unseen, a table-based Q-learning agent struggles to navigate
this variation (Table 1). Such instances could potentially be
avoided by using techniques to extrapolate for unseen states
based on prior experience. Apart from this, other game mod-
ifications consistently exhibit performance similar to the un-
modified original versions of the games, as is also expected
from a human player.

Thus, our comparisons show that an object-based represen-
tation, even if applied using a model-free algorithm, offers
much better sample efficiency (Figure 3). This improvement
is evident in results with environmental perturbations, such
as varying enemy positions and differently shaped enemies,

among other variations. The primary factor contributing to
this enhanced performance is the category-based representa-
tion, in which minor perturbations do not alter the game rep-
resentation significantly, which might be more prominent if
all objects are treated as separate entities and is definitely vis-
ible for pixel-based model-free methods like DQN.

The results are visible with Q learning, a discrete state al-
gorithm. We anticipate similar result translation with contin-
uous state approximations, a clear recipe for future work.

Conclusion
Making machines learn and act like humans is an impor-
tant goal in Artificial General Intelligence(AGI) (Lake et al.,
2017; Tsividis et al., 2017; Pouncy, 2022). We look at this
task from the eyes of a novice player discovering gameplay
dynamics. Building such a state in machines is an interdis-
ciplinary task. Drawing inspiration from previous works in
cognitive psychology, we try to develop a category-inspired
concept of object representation. Building upon this state
representation, we show that machines can exhibit certain
similarities to human-like learning in game playing. While
numerous studies try to reach this overarching goal of AGI,
using object representation and probabilistic generative mod-
eling (Ellis et al., 2023; Tsividis et al., 2021), we do not find
the affordance-based category representation in any of them,
which is our novel contribution. While we try to emulate
infant-like learning in game playing, we utilize just the vi-
sual cues for decision-making instead of working in a model-
based setting, and exploring the effect of our representations
with such planning would be an exciting way forward.

Limitations
Due to its model-free nature, our agent is still not as sample-
efficient as a human, but it does well on the generalizability
task. Works in theory-based RL paradigm, take the model as
given and explore planning within such a framework (Tsividis
et al., 2021; Pouncy, 2022). In contrast, our approach starts
from a near-blank state, and we hope to extend this concept to
learn a model of the environment based solely on core knowl-
edge and experience.

In our demonstration, we adopt a Q learning-based ap-
proach to illustrate that learning to play games from first
principles and category-level information can be incorpo-
rated in machines to instill certain human-like learning traits,
such as fast generalization for new objects and interpretable
affordance-based behavior. On a granular analysis, we find
that most of the instances where Affordance-based Q learn-
ing fails are those that have previously unseen states. This
mirrors situations where humans find themselves in new and
uncertain environments. What is expected of humans in such
scenarios is to generalize from previous experience to make
an informed decision, a definite recipe for future work.
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