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Abstract. This paper presents results from in silico experiments try-
ing to uncover the mechanisms by which people both succeed and fail
to reach consensus in networked games. We find that the primary cause
for failure in such games is preferential selection of information sources.
Agents forced to sample information from randomly selected fixed neigh-
borhoods eventually converge to a consensus, while agents free to form
their own neighborhoods and forming them on the basis of homophily fre-
quently end up creating balkanized cliques. We also find that small-world
structure mitigates the drive towards consensus in fixed networks, but
not for self-selecting networks. Preferentially attached networks appear
to show the highest convergence to one color, thereby showing resilience
to balkanization of opinion in self-selecting networks. We conclude with a
brief discussion of the implications of our findings for the representation
of behavior in socio-cultural modeling.
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1 Introduction

In the ever-evolving digital landscape of the 21st century, we confront socio-
cognitive divides shaped by polarization, filter bubbles, and clique formation.
Polarization reflects the increasing divergence of societal and political view-
points, fragmenting ideological landscapes into opposing extremes [1]. In the
realm of social media, this phenomenon is amplified by algorithmic personaliza-
tion, transforming it into a potent force that drives societies towards divisiveness
[2]. In the same vein, filter bubbles, a term birthed by Eli Pariser [3], encapsu-
late the unsettling reality of intellectual isolation, which now pervades the World
Wide Web. Algorithmically generated digital echo chambers present users with
content that aligns with their preexisting preferences, reinforcing self-confirming
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information loops. Clique formation materializes as individuals, sharing com-
mon attributes or beliefs, clustering together in cyberspace, resulting in islands
of homogeneity [4]. Homophily, an age-old sociological phenomenon, has expe-
rienced an exponential surge due to the reduction of friction in communication
in cyberspace, exerting profound influences on society, politics, and cognitive
processes [5].

Previous efforts to comprehend and address these phenomena have pre-
dominantly adopted social and cultural perspectives, examining how societal
structures, media environments, and cultural contexts shape their manifesta-
tions [1,4]. However, there has been a noticeable lack of focus on how these
phenomena impact and are influenced by individual cognitive and information
processing mechanisms. This gap in the literature signals an uncharted frontier
in our understanding of polarization, filter bubbles, and clique formation. The
intricate interaction between external stimuli and internal cognitive processes is
at the heart of how individuals navigate their social and informational environ-
ments. As such, understanding these phenomena from an information processing
standpoint is crucial to understand why and when polarization is likely to result
in networks of individuals.

In the context of this paper, we operationalize networks of individuals as
graphs produced by three different mechanisms, two of which make sociologi-
cal assumptions: Erdos-Renyi (ER), Barabasi-Albert (BA), and Watts-Strogatz
(WS). ER graphs, characterized by random connections between nodes, offer a
baseline mathematical graph model, with no socio-cultural appurtenances, for
studying network dynamics. On the other hand, BA graphs, generated via a pref-
erential attachment mechanism, exhibit power-law degree distributions, meaning
the probability of encountering highly connected nodes is relatively higher. This
aligns with the structure of social media and other digital networks, where influ-
ential individuals gather larger followings. BA graphs thus have a clear sociolog-
ical connotation and provide insights into the dynamics of online communities
wherein low social friction easily permits large inequalities in the degree distri-
bution of connectivity between individuals. WS graphs, with their small-world
architecture, strike a balance between local clustering and global connectivity,
reflecting networks in the real-world wherein higher social friction reduces the
range of degree distributions accessible to individuals. The small-world property
further reflects the interconnected nature of real-world social networks, wherein
individuals can establish connections with others through short paths, akin to
the “six degrees of separation” concept, without requiring to make a large num-
ber of direct connections personally. We examine how social preferences vary
over the course of networked consensus games in all three categories of graphs
in this paper.

2 Empirical Background for this Work

The motivation, and the empirical background, for this work comes primarily
from Michael Kearns’ paper, “Behavioral Experiments on a Network Formation
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Game” [6]. The paper talks about a series of behavioral experiments where 36
human participants had to solve a competitive coordination task (of biased vot-
ing) for monetary compensation. Communication, in these games, happens only
via the game GUI, and only with individuals in one’s assigned social neigh-
borhood. It has been found that in such cases, where the social neighborhoods
are explicitly fixed, and participants are then asked to achieve a collective goal,
human participants tend to perform well - subjects are able to extract almost
90% of the value that is available to them in principle. This has led researchers
to conclude that humans are quite good at solving a variety of challenging tasks
from only local interactions in an underlying network [7].

However, when Kearns made a slight change to the game, human perfor-
mance deteriorated. The slight change entailed participants having to build the
network during the experiment, via individual players purchasing links whose
cost is subtracted from their eventual task payoff. A striking finding is that
the players performed very poorly compared to behavioral experiments in which
network structures were imposed exogenously. Despite clearly understanding the
biased voting task, and being permitted to collectively build a network structure
facilitating its solution, participants instead built very difficult networks for the
task. This finding is in contrast to intuition, case studies and theories suggesting
that humans will often organically build communication networks optimized for
the tasks they are charged with, even if it means overriding more hierarchical
and institutional structures [8,9].

These results suggest that humans are able to achieve a collective goal if a
network structure is imposed on them, and they are restricted to communicating
within the fixed neighborhood itself; however, when they are free to choose people
to communicate with, instead of selecting people that will maximize the chances
of global coordination, human participants end up building sub-optimal networks
and fail to coordinate effectively.

3 Social Preference Formation

Central to our model is the assumption that the inference of social preferences
occurs through the same information processing mechanisms as the inference of
individual preferences. Building upon this assumption, our account relies on two
specific information-processing assumptions.

Firstly, we embrace the principle of inductive inference, which posits that
individuals make decisions by inferring what to do based on their past choices
involving similar options. In our model, agents exhibit this inductive reasoning
by updating their color preferences based on previous interactions and outcomes,
thereby gradually adjust their preferences over time, resulting in the emergence
of distinct color clusters.

Secondly, our model incorporates the concepts of memory growth and mem-
ory decay. Inspired by the workings of human memory, we assume that agents’
memories of past interactions can both strengthen and fade. Memory growth
reflects the reinforcement of memory traces associated with interactions that
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led to similar color preferences, promoting the formation of social ties with like-
minded individuals. On the other hand, memory decay represents the natural
process of forgetting, allowing agents to adapt and respond to changing social
dynamics. These memory dynamics contribute to the evolution of the network
structure and the emergence of distinct color clusters in the dynamic network
case.

By integrating inductive inference, memory growth, and memory decay into
our model, we aim to provide a more comprehensive understanding of how cog-
nitive processes shape social behavior. While our model is a simplified represen-
tation of complex human decision-making, it offers insights into the mechanisms
underlying social preferences and network dynamics.

3.1 Preference Inference per Iteration

There is now substantial evidence to believe that inductive inference underpins
the construction of several (if not all) mental attributes [10]. This Bayesian
approach to cognition was recently applied to the problem of preference learning
[11]. Following their notation, an agent’s preference for an option is identical to
the probability that it is desirable, p(r|x), and can be calculated by summing
out across evidence of desirability observed in multiple contexts,

p(r|x) =
∑

c∈C p(r|x, c)p(x|c)p(c)
∑

c∈C p(x|c)p(c) (1)

Here C is the set of all contexts offering x as a possible choice. The desirability
probability p(r|x, c) simply considers the frequency with which the agent had
previously preferred option x in context c, the option probability p(x|c) expresses
the frequency with which the option x is observed in context c, and the context
probability p(c) expresses the base rate of context c in the agent’s environment.

3.2 Memory Growth and Memory Decay Through Iterations

In the context of the model, memory decay and memory growth are parame-
ters that control how the memory matrix evolves over time. The role of these
parameters comes in particularly in the case of dynamic network.

Memory decay signifies the gradual decrease in the strength of an agent’s
memory of past interactions. It models the natural forgetting process in human
memory. A higher memory decay rate means that memories of past interactions
fade more quickly, while a lower decay rate means that memories persist for a
longer time.

new_memory = memory × (1−memory_decay) (2)

Memory growth, on the other hand represents the strengthening of an agent’s
memory of past interactions that have led to similar color preferences. It captures
the idea that repeated experiences of similarity reinforce memory traces. A higher
memory growth rate means that agents are more likely to remember and interact
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with agents who have similar color preferences, while a lower growth rate means
that memory is less influenced by past interactions.

new_memory[i, j] =memory[i, j]+
(similar_preferences[i, j]×memory_growth) (3)

where:

– new_memory[i, j] is the updated memory value for agent i’s memory of agent
j,

– memory[i, j] is the previous memory value for agent i’s memory of agent j,
– similar_preferences[i, j] is a measure of the similarity between agent i’s and

agent j’s color preferences,
– memory_growth is a parameter controlling the rate at which memory is rein-

forced.

We introduce an exponential decay factor to the memory distances, which repre-
sents the influence of memory decay. The memory weights are then calculated as
the product of the exponential decay factor and the corresponding memory val-
ues between agents. This way, we emphasize stronger memories while accounting
for the decay process.

The use of the exponential decay factor ensures that closer memory distances
and stronger memory values lead to higher memory weights, indicating a higher
probability of selecting an agent as a neighbor. The normalization step ensures
that the memory weights sum up to 1, providing a valid probability distribution
for neighbor selection. In doing so, the neighborhood selection process takes into
account both memory growth and memory decay, resulting in the formation of
connections based on the strength and recency of agents’ memories.

4 Demonstrations and Results

In a typical consensus game, members of a group are permitted to preferentially
assign themselves one of a small set of colors, but the entire group is rewarded if
it eventually converges to one color. Kearns [6] finds that people are very good
at maximizing the group’s welfare across a variety of network structures and
incentives, so long as the set of their neighbors is held constant: human subjects
achieved approximately 90% of the theoretically maximum payout attainable by
a perfectly coordinated group.

To assess the behavior of our social preference learning agents, we simulated
an environment containing 36 agents, each randomly endowed with one of four
color preferences. In other words, for a given agent i, the initial pi(r|x) = 1
for one x, and = 0 for the three other xs (colors). The agents could interact
with any of the other agents in a sequence. The possible agents with which the
initiator i interact with are, from his perspective, the context; thus, interaction
partners (responders) are considered c and the interaction is selected by sam-
pling the available neighbors. For simulations using fixed networks, each agent’s
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Fig. 1. The plot shows convergence over time for all the fixed network simulations for
all three types of graphs. Shaded area represents 95% CI after 1000 simulations. We
see convergence for all three graph types.

neighborhood was specified and it could not be changed during the course of
the iterations. During an interaction, the responder indicates to the initiator his
preferred color (argmax[p(r|x, c)]), and the responder received no information.
At each time step, the initiator updates their own color preferences by marginal-
izing across the preferences expressed by their neighbors using the preference
inference computation mentioned earlier.

We simulate neighborhoods randomly using all three types of graphs - ER,
BA, and WS - 1000 times, and report results using the average convergence (the
greatest number of nodes converging to a particular color divided by the total
number of nodes in the graph at any point in time) obtained for 50 iterations
of the consensus game played on each graph for all three categories of graphs in
Fig. 1. Even in the absence of an explicitly specified reward for group consensus,
our simulation results show that individual agents use the preferences of their
neighbors to change their personal preferences, until consensus is reached.

Consistent with the existing literature [12], we find that the color with the
greatest representation in the initial condition of each graph wins most fre-
quently (this result simply verifies that under a fixed network structure, our
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model appropriately propagates beliefs). We also find that the rate of conver-
gence to consensus is directly proportional to the degree of nodes on average in
all three types of graphs.

Fig. 2. On the left is the initial network for the dynamic network condition in one of
the trials, using the ER graph. On the right is the final network after 50 iterations. We
see balkanization and cliques formation based on color preference similarities.

But what happens when agents are free to choose their neighbors? When
Kearns [7] relaxed the fixed network structure, such that subjects could select
which of their neighbors they wished to receive information about, they found
that coordination suffered massively, with efficiency dropping to about 40%. It
turns out that while humans are extremely good at adapting their preferences to
existing network structures, something about the process of social link formation
causes this facility of coordination to break down.

We find similar results from our simulation experiment across a broad range
of parameter values for memory growth and memory decay. Since network con-
nections were now permitted to be dynamic, agents updated their neighborhoods
using encounter information throughout the simulation. At each model iteration,
the propensity for interacting with other agents changed, and so did their current
preference, using the computation for p(r|x) as above. See Fig. 2 - agents start
out with a fixed network, and are then allowed to sample from other agents to
update their neighborhood and connections. As a result of this, the final network
state (on the right of Fig. 2) turns out to be balkanized.

When updating preferences in fixed network conditions, agents performed the
computation as suggested by Eq. 1, and that was enough to get them to global
convergence - even in absence of any specified rewards. However, in the case
of dynamic networks, when agents were free to choose their neighbors in every
iteration, agents retain memories of past interactions, enabling them to recall
and potentially favor agents with whom they have had shared color preferences
in the past. This memory retention allows for the persistence of social ties and
the potential formation of clusters based on shared preferences. This contributes
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Fig. 3. The plot shows convergence over time for all the fixed network simulations for
all three types of graphs. Shaded area represents 95% CI after 1000 simulations.

to the reinforcement of existing social ties, potentially leading to the emergence
of cohesive clusters of agents with similar color preferences. This is the case for
ER, BA, as well as WS graphs. However, there is a curious differentiation that
can be observed when we look at the convergence asymptote value for the three
types of graphs across all simulations and all iterations - see Fig. 3 above.

We see that Barabasi-Albert networks show convergence to a higher asymp-
totic value compared to Watts-Strogatz as well as Erdos-Renyi networks. Con-
sidering the structural differences in how the three graphs are generated, we
find an interesting explanation for this difference. What makes the BA graph
different from the other two is its degree distribution, which follows a power law
- thereby increasing the probability of finding nodes that are thickly connected
with many neighbors, compared to ER graphs, where the degree distribution is
binomially (approximately normally) distributed. Likewise, with WS, we have a
small world structure, yielding a close to uniform degree distribution.

For the consensus game, all that matters is the local neighborhood - so, if a
node is thickly connected, there is a high chance that it is connected to nodes
that have varying colors. If such a node switches over, it’s going to have a lot
of impact on the rest of the graph. Since we are more likely to see this sort of
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highly trusted or highly influential node in a BA network than in ER or WS
graphs, we see a higher convergence asymptote for BA than ER or WS graphs.

Thus, we find that the same algorithm, when allowed to work with a fixed
network structure, performs information coordination efficiently, whereas when
allowed freedom to preferentially create local network neighborhoods, agents
behave in locally optimal ways that reduce global coordination. We believe
these findings explain to a considerable extent the mysterious gap in coordi-
nation performance in Kearns’ networked game experiments: Agents, and likely
humans, assure themselves that they have equilibrated to the consensus prefer-
ence through sampling the preference of their neighbors. When forced to consider
all neighbors, they must necessarily engage with all the information present in
their neighborhood; when free to choose, they end up restricting communication
with neighbors who share their preference.

5 Conclusion

In this paper, we used a memory-based model of social preference learning to re-
produce both the success and failure of agents to attain consensus in a networked
game, based on whether agents were permitted to select their social neighbor-
hood. We showed that networks of agents forced to play with neighborhoods
assigned to them nearly always converged to a consensus color in the game,
although this process was slower for Watts-Strogatz small-world neighborhoods.
We also showed that networks of agents permitted to create their own neighbor-
hoods failed to converge to a consensus, with Barabasi-Albert style preferentially
attached networks reaching more majority consensus than alternative types.

One alternative to the memory model we used is instance-based learning
(IBL). IBL assumes that decision making is based on remembering past experi-
ences and generalizing from these to new situations [13]. The Adaptive Control
of Thought - Rational (ACT-R) model is another alternative. ACT-R posits that
cognition is composed of a set of basic modules (e.g., visual and auditory), a sin-
gle production system that coordinates interactions among the modules, and a
single declarative memory system that stores factual knowledge [14]. However,
while each of these models focuses on different aspects of cognition, they are
ultimately just vehicles for the assumptions - and it is these assumptions that
determine how accurately the model can predict phenomena in the real world.
The choice of model does not fundamentally change our conclusions, so long as
the assumptions that guide our model are valid and are themselves representative
of the phenomena we seek to understand.

Our findings have theoretical as well as practical implications for enhancing
group efficiency and cohesion, particularly in addressing the challenges posed by
clique formation and balkanization. By understanding the mechanisms underly-
ing network dynamics and their impact on group behavior, we can also design
social media platforms and online communities that foster a less balkanized envi-
ronment. In particular, our results show that it is not necessary to impose fixed
networked structure to prevent balkanization. The presence of highly connected
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nodes in networks also protects communities from failures in consensus, so long
as these nodes are open to changing their colors based on observing their local
neighborhood’s majority view. Interestingly, these results are consistent with
recent empirical work showing that the effect of filter bubbles in large-scale
social media may be overstated [15].

Naturally, our current model is highly simplified, and ignores the possibility
of alternative reward structures influencing the opinions of individual nodes in
the graph. Exploring these possibilities constitutes a clear direction for future
work in this project.

References

1. DiMaggio, P., Evans, J., Bryson, B.: Have American’s social attitudes become more
polarized? Am. J. Sociol. 102(3), 690–755 (1996)

2. Borgesius, F.J.Z., et al.: Should we worry about filter bubbles? Internet Policy
Rev. 5, 1–16 (2016)

3. Pariser, E.: The Filter Bubble: What the Internet Is Hiding from You. Penguin
Press, New York (2011)

4. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in
social networks. Ann. Rev. Sociol. 27, 415–444 (2001)

5. Sunstein, C.R.: #Republic: Divided Democracy in the Age of Social Media. Prince-
ton University Press, Princeton (2017)

6. Kearns, M., Judd, S., Vorobeychik, Y.: Behavioral experiments on a network for-
mation game. In: Proceedings of the ACM Conference on Electronic Commerce
(2012)

7. Kearns, M., Judd, S., Tan, J., Wortman, J.: Behavioral experiments on biased
voting in networks. Proc. Natl. Acad. Sci. U.S.A. 106, 1347–1352 (2009)

8. Burns, T., Stalker, G.M.: The Management of Innovation. Oxford University Press,
Oxford (1994)

9. Nonaka, I., Nishiguchi, T.: Fractal design: self-organizing links in supply chain
management. In: Knowledge Creation: A Source of Value, pp. 199–230. Ed. St.
Martin’s Press (2009)

10. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind:
Statistics, structure, and abstraction. Science 331, 1279–1285 (2011)

11. Srivastava, N., Schrater, P.: Rational inference of relative preferences, Proceedings
of Advances in Neural Information Processing Systems 25, vol. 26 (2012)

12. Tang, J., Wu, S., Sun, J.: Confluence: conformity influence in large social networks.
In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 347–355 (2013)

13. Gonzalez, C., Lerch, F.J., Lebiere, C.: Instance-based learning in dynamic decision
making. Cogn. Sci. 27, 591–635 (2005)

14. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An
integrated theory of the mind. Psychol. Rev. 111, 1036 (2004)

15. Dahlgren, P.M.: A critical review of filter bubbles and a comparison with selective
exposure. Nordicom Rev. 42(1), 15–33 (2021)


	Understanding Clique Formation in Social Networks - An Agent-Based Model of Social Preferences in Fixed and Dynamic Networks
	1 Introduction
	2 Empirical Background for this Work
	3 Social Preference Formation
	3.1 Preference Inference per Iteration
	3.2 Memory Growth and Memory Decay Through Iterations

	4 Demonstrations and Results
	5 Conclusion
	References




