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Abstract

Deep neural networks (DNNs) have had extraordinary successes in classifying photographic
images of objects and are often described as the best models of biological vision. This conclu-
sion is largely based on three sets of findings: (1) DNNs are more accurate than any other
model in classifying images taken from various datasets, (2) DNNs do the best job in predict-
ing the pattern of human errors in classifying objects taken from various behavioral datasets,
and (3) DNNs do the best job in predicting brain signals in response to images taken from
various brain datasets (e.g., single cell responses or fMRI data). However, these behavioral
and brain datasets do not test hypotheses regarding what features are contributing to good
predictions and we show that the predictions may be mediated by DNNs that share little over-
lap with biological vision. More problematically, we show that DNNs account for almost no
results from psychological research. This contradicts the common claim that DNNs are good,
let alone the best, models of human object recognition. We argue that theorists interested in
developing biologically plausible models of human vision need to direct their attention to
explaining psychological findings. More generally, theorists need to build models that explain
the results of experiments that manipulate independent variables designed to test hypotheses
rather than compete on making the best predictions. We conclude by briefly summarizing
various promising modeling approaches that focus on psychological data.

1. Introduction

The psychology of human vision has a long research history. Classic studies in color percep-
tion (Young, 1802), object recognition (Lissauer, 1890), and perceptual organization
(Wertheimer, 1912) date back well over 100 years, and there are now large and rich literatures
in cognitive psychology, neuropsychology, and psychophysics exploring a wide range of high-
and low-level visual capacities, from visual reasoning on the one hand to subtle perceptual dis-
criminations on the other. Along with rich datasets there are theories and computational mod-
els of various aspects of vision, including object recognition (e.g., Biederman, 1987; Cao,
Grossberg, & Markowitz, 2011; Erdogan & Jacobs, 2017; Hummel & Biederman, 1992;
Marr, 1982; Ullman & Basri, 1991; for reviews see Gauthier & Tarr, 2016; Hummel, 2013).
However, one notable feature of psychological models of vision is that they typically do not
solve many engineering challenges. For example, the models developed in psychology cannot
identify naturalistic images of objects.

By contrast, deep neural networks (DNNs) first developed in computer science have had
extraordinary success in classifying naturalistic images and now exceed human performance
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on some object recognition benchmarks. For example, the
ImageNet Large-Scale Visual Recognition Challenge was an annual
competition that assessed how well models could classify images
into one of a thousand categories of objects taken from a dataset
of over 1 million photographs. The competition ended in 2017
when 29 of 38 competing teams had greater than 95% accuracy,
matching or surpassing human performance on the same dataset.
These successes have raised questions as to whether the models
work like human vision, with many researchers highlighting the
similarity between the two systems, and some claiming that
DNNs are currently the best models of human visual object pro-
cessing (e.g., Kubilius et al., 2019; Mehrer, Spoerer, Jones,
Kriegeskorte, & Kietzmann, 2021; Zhuang et al., 2021).

Strikingly, however, claims regarding the similarity of DNNs to
human vision are made with little or no reference to the rich body
of empirical data on human visual perception. Indeed, researchers
in psychology and computer science often adopt very different
criteria for assessing models of human vision. Here we highlight
how the common failure to consider the vast set of findings
and methods from psychology has impeded progress in develop-
ing human-like models of vision. It has also led to researchers
making far too strong claims regarding the successes of DNNs
in modeling human object recognition. In fact, current deep
network models account for almost no findings reported in psy-
chology. In our view, a plausible model of human object recogni-
tion must minimally account for the core properties of human
vision.
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The article is organized as follows. First, we review and criticize
the main sources of evidence that have been used to support the
claim that DNNs are the best models of human object recogni-
tion, namely, their success in predicting the data from a set of
behavioral and brain studies. We show that good performance
on these datasets is obtained by models that bear little relation
to human vision. Second, we question a core theoretical assump-
tion that motivates much of this research program, namely, the
hypothesis that the human visual system has been optimized to
classify objects. Third, we assess how well DNNs account for a
wide range of psychological findings in vision. In almost all
cases these studies highlight profound discrepancies between
DNNs and humans. Fourth, we briefly note how similar issues
apply to other domains in which DNNs are compared to humans.
Fifth, we briefly outline more promising modeling agendas before
concluding.

We draw two general conclusions. First, current DNNs are not
good (let alone the best) models of human object recognition.
Apart from the fact that DNNs account for almost no findings
from psychology, researchers rarely consider alternative theories
and models that do account for many key experimental results.
Second, we argue that researchers interested in developing
human-like DNN models of object recognition should focus on
accounting for key experimental results reported in psychology
rather than the current focus on predictions that drive so much
current research.

2. The problem with benchmarks

It is frequently claimed that DNNs are the best models of the
human visual system, with quotes like:

Deep convolutional artificial neural networks (ANNs) are the leading class
of candidate models of the mechanisms of visual processing in the primate
ventral stream. Kubilius et al. (2019)

Deep neural networks provide the current best models of visual infor-
mation processing in the primate brain. (Mehrer et al., 2021)

Primates show remarkable ability to recognize objects. This ability is
achieved by their ventral visual stream, multiple hierarchically intercon-
nected brain areas. The best quantitative models of these areas are deep
neural networks…. (Zhuang et al., 2021)

Deep neural networks (DNNs) trained on object recognition provide
the best current models of high-level visual areas in the brain…. (Storrs,
Kietzmann, Walther, Mehrer, & Kriegeskorte, 2021)

Relatedly, DNNs are claimed to provide important insights into
how humans identify objects:

Recently, specific feed-forward deep convolutional artificial neural net-
works (ANNs) models have dramatically advanced our quantitative
understanding of the neural mechanisms underlying primate core object
recognition. (Rajalingham et al., 2018)

And more generally:

Many recent findings suggest that deep learning can inform our theories
of the brain…many well-known behavioral and neurophysiological phe-
nomena, including… visual illusions and apparent model-based reason-
ing, have been shown to emerge in deep ANNs trained on tasks similar
to those solved by animals. (Richards et al., 2019)

AI is now increasingly being employed as a tool for neuroscience
research and is transforming our understanding of brain functions. In par-
ticular, deep learning has been used to model how convolutional layers
and recurrent connections in the brain’s cerebral cortex control important

functions, including visual processing, memory, and motor control.
(Macpherson et al., 2021)

Of course, these same authors also note that DNNs are still far
from perfect models of human vision and object recognition,
but it is the correspondences that are emphasized and that receive
all the attention.

The claim that DNNs are the best models of human object rec-
ognition is largely justified based on three sets of findings,
namely, (1) DNNs are more accurate than any other model in
classifying images taken from various datasets, (2) DNNs do the
best job in predicting the pattern of human errors in classifying
objects taken from various behavioral studies, and (3) DNNs do
the best job in predicting brain recordings (e.g., single-cell
responses or fMRI blood-oxygen-level-dependent [BOLD] sig-
nals) in response to images taken from various studies.
According to this research program, all else being equal, the better
the models perform on the behavioral and brain datasets, the
closer their correspondence with human vision. This is nicely
summarized by Schrimpf et al. (2020a) when describing their
benchmark dataset: “Brain-Score – a composite of multiple neural
and behavioral benchmarks that score any [artificial neural net-
work] on how similar it is to the brain’s mechanisms for core
object recognition” (p. 1).

A key feature of these behavioral and brain studies is that they
assess how well DNNs predict behavioral and brain responses to
stimuli that vary along multiple dimensions (e.g., image category,
size, color, texture, orientation, etc.) and there is no attempt to test
specific hypotheses regarding what features are contributing to
good predictions. Rather, models are assessed and compared in
terms of their predictions on these datasets after averaging over
all forms of stimulus variation. Due to lack of a better name,
we will use the term prediction-based experiments to describe
this method. This contrasts with controlled experiments in
which the researcher tests hypotheses about the natural world
by selectively manipulating independent variables and comparing
the results across conditions to draw conclusions. In the case of
studying human vision, this will often take the form of manipu-
lating the images to test a specific hypothesis. For instance, a
researcher might compare how well participants identify photo-
graphs versus line drawings of the same objects under the same
viewing conditions to assess the role of shape versus texture/
color in object identification (see sect. 4.2.3).

To illustrate the prediction-based nature of these studies, con-
sider the image dataset from Kiani, Esteky, Mirpour, and Tanaka
(2007) used by Khaligh-Razavi and Kriegeskorte (2014) to assess
how well DNNs can predict single-cell responses in macaques and
fMRI BOLD signals in humans using representational similarity
analysis (RSA). This dataset includes objects from six categories
(see Fig. 1) that vary in multiple ways from one another (both
within and between categories) and the objects often contain mul-
tiple different visual features diagnostic of their category (e.g.,
faces not only share shape they tend to share color and texture).
Critical for present purposes, there is no manipulation of the
images to test which visual features are used for object recognition
in DNNs, humans, or macaques, and what visual features DNNs
use to support good predictions on the behavioral and brain data-
sets. Instead, models receive an overall RSA score that is used to
make inferences regarding the similarity of DNNs to the human
(or macaque) visual object recognition system.

Or consider the Brain-Score benchmark that includes a range
of behavioral and brain studies that together are used to rate a
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model’s similarity to human object recognition (Schrimpf et al.,
2020a, 2020b). Currently five studies are used to assess how
well DNNs predict brain activation in inferotemporal (IT) cortex.
The first of these (Majaj, Hong, Solomon, & DiCarlo, 2015)
recorded from neurons from two awake behaving rhesus
macaques who viewed thousands of images when objects were
placed on unrelated backgrounds with the size, position, and ori-
entation of the objects systematically varied to generate a large
dataset of images. See Figure 2 for some example images.
Despite the manipulation of size, position, and orientation of
the images, Brain-Score collapses over these factors, and each
model receives a single number that characterizes how well they
predict the neural responses across all test images. Accordingly,
Brain-Score does not test any hypothesis regarding how size, posi-
tion, or orientation are encoded in DNNs or humans. The other
four studies that test DNN–IT correspondences used similar data-
sets, and again, Brain-Score averaged across all test images when
generating predictions.

Similarly, consider the two studies in Brain-Score that assess
how well DNNs predict behavior in humans and macaques.
The first used objects displayed in various poses and randomly
assigned backgrounds (similar to Fig. 2; Rajalingham, Schmidt,
& DiCarlo, 2015), but again, predictions were made after collaps-
ing over the various poses. The second study was carried out by
Geirhos et al. (2021) who systematically varied images across mul-
tiple conditions to test various hypotheses regarding how DNNs
classify objects. For example, in one comparison, objects were pre-
sented as photographs or as line drawings to assess the role of
shape in classifying objects (see sect. 4.2.3). However, in
Brain-Score, the performance of models is again averaged across
all conditions such that the impact of specific manipulations is
lost.1 In sum, in all current prediction-based experiments, models
are assessed in how well they predict overall performance, with

the assumption that the higher the prediction, the better the
DNN–human (macaque) correspondence. On this approach,
there is no attempt to assess the impact of any specific image
manipulation, even when the original experiments specifically
manipulated independent variables to test hypotheses.

This is not to say that researchers comparing DNNs to humans
using prediction-based experiments do not manipulate any vari-
ables designed to test hypotheses. Indeed, the standard approach
is to compare different DNNs on a given dataset; in this sense, the
researcher is manipulating a theoretically motivated variable (the
models). However, these manipulations tend to compare models
that vary along multiple dimensions (architectures, learning
rules, objective functions, etc.) rather than assess the impact of
a specific manipulation (e.g., the impact of pretraining on
ImageNet). Accordingly, it is rarely possible to attribute any dif-
ferences in predictivity to any specific manipulation of the mod-
els. And even when the modeler does run a controlled experiment
in which two models are the same in all respects apart from one
specific manipulation (e.g., Mehrer, Spoerer, Kriegeskorte, &
Kietzmann, 2020), the two models are still being assessed in a
prediction-based experiment where there is no assessment of
what visual properties of the images are driving the predictions.

This method of evaluating DNNs as models of human vision
and object recognition is at odds with general scientific practice.
Most research is characterized by running controlled experiments
that vary independent variables to test specific hypotheses regard-
ing the causal mechanisms that characterize some natural system
(in this case, biological vision). Models are supported to the extent
that they account for these experimental results, among other
things. The best empirical evidence for a model is that it survives
“severe” tests (Mayo, 2018), namely, experiments that have a high
probability of falsifying a model if and only if the model is false in
some relevant manner. Relatedly, models are also supported to the

Figure 1. Example images from Kiani et al. (2007) that include images from six categories.

Figure 2. Example images of cars, fruits, and animals at various poses with random backgrounds from Majaj et al. (2015).
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extent that they can account for a wide range of qualitatively dif-
ferent experimental results because there may be multiple differ-
ent ways to account for one set of findings but far fewer ways to
explain multiple findings. Of course, prediction is also central to
evaluating models tested on controlled experiments, but predic-
tion takes the form of accounting for the experimental results
of studies that manipulate independent variables, with prediction
in the service of explanation. That is, the goal of a model is to test
hypotheses about how a natural system works rather than account
for the maximum variance on behavioral and brain datasets.

Outside the current DNN modeling of human vision and
object recognition there are few areas of science where models
are assessed on prediction-based experiments and compete on
benchmark datasets with the assumption that, all else being
equal, models with better predictions more closely mirror the sys-
tem under investigation. There are fewer areas still where
prediction-based experiments drive theoretical conclusions
when it is possible to perform controlled experiments that vary
independent variables designed to test specific hypotheses. Even
the simpler parallel distributed processing (PDP) network models
developed in the 1980s were assessed on their ability to account
for a wide range of experimental results reported in psychology
(McClelland, Rumelhart, & PDP Research Group, 1986).

Our contention is that researchers should adopt standard sci-
entific methods and assess models on their ability to accommo-
date the results of controlled experiments from psychology (and
related disciplines) rather than on prediction-based experiments.
We not only show that there are principled and practical prob-
lems with the current approach, but also, that many of the infer-
ences drawn from prediction-based experiments are in fact
wrong.

2.1. The “in principle” problems with relying on prediction
when comparing humans to DNNs

There are three fundamental limitations with prediction-based
experiments that undermine the strong claims that are commonly
made regarding the similarities between DNN and human object
recognition.

2.1.1. Correlations do not support causal conclusions
Scientists are familiar with the phrase “correlation does not imply
causation,” but the implication for DNN modeling is underappre-
ciated, namely, good predictions do not entail that two systems
rely on similar mechanisms or representations (admittedly, not
as snappy a phrase). Guest and Martin (2023) give the example
of a digital clock predicting the time of a mechanical clock.
One system can provide an excellent (in this case perfect) predic-
tion of another system while relying on entirely different mecha-
nisms. In the same way, DNN models of object recognition that
make good (even perfect) predictions on behavioral and brain
datasets might be poor models of vision. In the face of good pre-
dictions, controlled experiments that manipulate independent
variables designed to test hypotheses are needed to determine
whether the two systems share similar mechanisms. In the current
context, it is the most straightforward way to assess whether a
DNN that tops the rankings on a benchmark like Brain-Score is
computing in a brain-like manner.

How seriously should we take this objection? If something
walks like a duck and quacks like a duck, isn’t it in all likelihood
a duck? In fact, DNNs often make their predictions in unexpected
ways, exploiting “shortcuts” that humans never rely on (e.g.,

Geirhos et al., 2018; Malhotra, Dujmovic, & Bowers, 2022;
Malhotra, Evans, & Bowers, 2020; Rosenfeld, Zemel, & Tsotsos,
2018). For example, Malhotra et al. (2020) systematically inserted
single pixels (or clouds of pixels) into photographs in ways that
correlated with image category so that the images could be classi-
fied based on the photographic subjects themselves or the pixels.
DNNs learned to classify the images based on the pixels rather
than the photos, even when a single pixel was nearly impercepti-
ble to a human. In all cases of shortcuts, the performance of
DNNs is mediated by processes and/or representations that are
demonstrably different from those used in biological vision.

The critical issue for present purposes, however, is whether
models that classify images based on shortcuts also perform
well on prediction-based experiments. Dujmović, Bowers,
Adolfi, and Malhotra (2022) explored this question using RSA
which compares the distances between activations in one system
to the distances between corresponding activations in the second
system (see Fig. 3). To compute RSA, two different systems (e.g.,
DNNs and brains) are presented the same set of images and the
distance between the representations for all pairs of images is
computed. This results in two representational dissimilarity
matrices (RDMs), one for each system. The similarity of these
RDMs gives an RSA score. That is, rather than directly comparing
patterns of activations in two systems, RSA is a second-order
measure of similarity. In effect, RSA is a measure of representa-
tional geometry similarity – the similarity of relative representa-
tional distances of two systems. High RSA scores between
DNNs and humans (and monkeys) have often been used to con-
clude that these systems classify images in similar ways (e.g.,
Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; Khaligh-Razavi
& Kriegeskorte, 2014; Kiat et al., 2022; Kriegeskorte, Mur, &
Bandettini, 2008a; Kriegeskorte et al., 2008b).

To assess whether large RSAs can be obtained between two
very different systems, Dujmović et al. (2022) carried out a series
of simulations that computed RSAs between two DNNs or
between DNNs and single-cell recordings from macaque IT
when the two systems classified objects in qualitatively different
ways. For example, when comparing DNNs to macaque IT, the
authors trained a DNN to classify photographs taken from
Majaj et al. (2015) that contained a pixel patch confound (call
it DNN-pixel) as well as unperturbed photos (DNN-standard),
similar to the Malhotra et al.’s (2020) setup described above.
The critical finding was that RSAs could be pushed up or down
systematically depending on the pixel patch locations. For certain
placements of the patches, the RSA observed between the
DNN-pixel and macaque IT matched the RSA scores achieved
by networks pretrained on naturalistic stimuli (ImageNet dataset)
and fine-tuned on the unperturbed images (Fig. 4, left). That is,
even macaque IT and DNNs that classified objects based on single
pixel patches could share representational geometries (for related
discussion, see Kriegeskorte & Wei, 2021; Palmer, 1999). By con-
trast, the location of the patches on the DNN-standard network
did not impact RSAs.

Another common prediction method involves directly fitting
unit activations from DNNs to brain activations (single-cell
recordings or voxels in fMRI) in response to the same set of
images using linear regression (e.g., Yamins et al., 2014). This
neural predictivity approach is used in the Brain-Score bench-
mark (Schrimpf et al., 2020a, 2020b). Despite this important dis-
tinction between RSA and neural activity, when these two
methods are used on behavioral and brain datasets they are
both correlational measures, so again, it is possible that confounds

Bowers et al.: Deep problems with neural network models of human vision 5

https://doi.org/10.1017/S0140525X22002813 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X22002813


are driving brain predictivity results as well. Consistent with this
possibility, DNNs that classify images based on confounding fea-
tures often perform well on Brain-Score. For example, object
shape and texture are confounded in the natural world (and in
ImageNet), with DNNs often classifying objects based on their
texture and humans based on their shape (Geirhos et al., 2019;
for more details see sect. 4.1.2). Just as texture representations
are used to accurately predict object categories in DNNs, texture
representations in DNNs may be used to predict shape represen-
tations in the human (and macaque) visual system to obtain high
neural predictivity scores. More direct evidence for this comes
from ongoing work by Dujmović, Bowers, Adolfi, and Malhotra
(2023) that has shown that neural predictivity is indeed influ-
enced by confounding factors. For example, the ability of DNNs
to predict macaque neural activity depended heavily on whether

the images contained a confounding feature – in which case pre-
dictivity rose drastically compared to when the confound was not
present (see Fig. 4, right). In this case, the spatial organization of
the confounding pixel patches did not matter, presumably reflect-
ing the fact that neural predictivity does not assess the similarity
representational geometries. Thus, a good neural predictivity
score may reflect the fact that DNNs are exploiting confounds
(shortcuts) in datasets rather than mirroring biological vision.

It is not only the presence of confounds that can lead to mis-
leading conclusions based on predictions. Another factor that
may contribute to the neural predictivity score is the effective
latent dimensionality of DNNs – that is, the number of principal
components needed to explain most of the variance in an internal
representation of DNNs. Elmoznino and Bonner (2022) have
shown that effective latent dimensionality of DNNs significantly

Figure 3. RSA calculation. A series of stimuli from a set of categories (or conditions) are used as inputs to two different systems (e.g., a brain and a DNN). The
corresponding neural or unit activity for each stimulus is recorded and pairwise distances in the activations within each system are calculated to get the repre-
sentational geometry of each system. This representational geometry is expressed as a representational dissimilarity matrix (RDM) for each system. Finally, an RSA
score is determined by computing the correlation between the two RDMs (image taken from Dujmović et al., 2022).

Figure 4. RSA (left) and Brain-Score (right) for networks trained on predictive pixels. The location of the pixel patches varied across conditions, such that the loca-
tion was positively, negatively, or uncorrelated with the representational distances between classes in the macaque IT. When the pixel distances are positively
correlated in the training set, RSA scores approached scores achieved by networks pretrained on ImageNet and fine-tuned on unperturbed images. When the train-
ing images did not contain the pixel confounds, the location of the pixels at test did not impact RSA scores. The dataset dependence of RSA scores extends to
neural predictivity as measured by Brain-Score as the same pixel networks explain significantly more macaque IT activity when the confounding feature is present
in the stimuli (RSA scores taken from Dujmović et al., 2022, Brain-Score results are part of ongoing, unpublished research).
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correlates with the extent to which they predict evoked neural
responses in both the macaque IT cortex and human visual cor-
tex. Importantly, the authors controlled for other properties of
DNNs, such as number of units in a layer, layer depth, pretrain-
ing, training paradigm, and so on and found that prediction of
neural data increases with an increase in effective dimensionality,
irrespective of any of these factors. In other words, DNNs may
outperform other models on benchmarks such as Brain-Score
not because their internal representations or information process-
ing is similar to information processing in the cortex, but because
they effectively represent input stimuli in higher dimensional
latent spaces.

Of course, two DNNs (or a DNN and a brain) that do represent
objects in a highly similar way will obtain high RSAs and high neu-
ral predictivity scores, but the common assumption that high RSAs
and predictivity scores indicate that two systems work similarly is
unsafe. This is illustrated in Figure 5 where better performance on
prediction-based experiments can correspond to either more or
less similarity to human vision, and where models with benchmark
scores of zero can provide important insights into human vision
(because the model does not even take images as inputs). The
most straightforward way to determine whether good performance
on prediction-based experiments reflects meaningful DNN–brain
correspondences is to carry out controlled experiments.

2.1.2. Prediction-based experiments provide few theoretical
insights
Putting aside the misleading estimates of DNN–human similarity
that may follow from prediction-based experiments, the theoreti-
cal conclusions one can draw from good predictions are highly

limited compared to cases in which models are tested against con-
trolled experiments. For example, perhaps the most fundamental
finding regarding human basic-level object recognition is that we
largely rely on shape representations (Biederman & Ju, 1988).
This results in humans recognizing objects based on their shape
rather than texture when the texture of one category is superim-
posed on the shape of another (e.g., an image that takes the shape
of a cat and a texture of an elephant is classified as a cat; Geirhos
et al., 2019; for more details see sect. 4.1.2). Importantly, a mod-
el’s success or failure in capturing this result is theoretically infor-
mative. In the case of a success, the model may provide some
insight into how shape is encoded in the visual system. And
when a model fails, it can provide guidance for future research
(e.g., researchers can try to modify the training environments,
architectures of DNNs, etc., in theoretically motivated ways to
induce a shape bias).

By contrast, no similar insights derive from high scores on
prediction-based experiments (even assuming the good predic-
tions provide an accurate reflection of DNN–brain similarity).
For example, it is not clear whether the models at the top of
the Brain-Score leaderboard classify images based on shape or
texture. To answer this question, some sort of controlled experi-
ment needs to be carried out (such as the Geirhos et al., 2019,
controlled experiment). More generally, when a DNN falls short
of the noise ceiling on prediction-based experiments the limited
success does not provide specific hypotheses about how to
improve the model. Researchers might hypothesize that DNNs
should be trained on more ecological datasets (e.g., Mehrer
et al., 2021), or that it is important to add top-down connections
that characterize the human visual system (e.g., Zhuang et al.,

Figure 5. Different models fall in different parts of the theory landscape. Critically, it is possible to do well on prediction-based experiments despite poor corre-
spondences to human vision, and there is no reason to expect that modifying a model to perform better on these experiments will necessarily result in better
models of human vision. Similarly, poor performance does not preclude the model from sharing important similarities with human vision. Noise ceiling refers
to how well humans predict one another on prediction-based experiments, and it is the best one can expect a model to perform.
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2021), and so on. However, the size of the gap between perfor-
mance and the noise ceiling does not suggest which of the differ-
ent possible research directions should be pursued, or which of
multiple different dimensions of variations between models
(e.g., the architecture, learning rule, optimization function, etc.)
is most responsible for the failure (or success).

2.1.3. Prediction-based experiments restrict the types of theories
that can be considered
Finally, the reliance on current prediction-based experiments
ensures that only “image-computable” models that can take photo-
realistic images as inputs are considered. This helps explain why
psychological models of object recognition are ignored in the
DNN community. By contrast, when assessing models on their abil-
ity to account for results of controlled experiments, a broader range
of models can be assessed and compared. For example, consider the
recognition by components (RBC) model of basic-level object recog-
nition that was first formulated at a conceptual level to explain a
wide variety of empirical findings (Biederman, 1987) and later elab-
orated and implemented in a neural network architecture called JIM
(Hummel & Biederman, 1992). These two models could not be any
different from the current DNNs given that they characterize repre-
sentations, processes, and even objective functions in qualitatively
different ways. Nevertheless, the RBC and JIM models make multi-
ple predictions regarding human object recognition and vision more
generally, and accordingly, can be compared to DNNs in terms of
their ability to predict (and explain) a wide variety of empirical phe-
nomena (of the sort reviewed in sect. 4). The common conclusion
that DNNs are the best models of human object recognition relies
on excluding alternative models that do account for a range of
key experimental results reported in psychology.

To summarize, the common claim that DNNs are currently
the best models of human vision relies on prediction-based exper-
iments that may provide misleading estimates of DNN–human
similarity, that provide little theoretical insight into the similari-
ties that are reported, and that exclude the consideration of alter-
native models that do explain some key empirical findings. It is
important to emphasize that these principled problems do not
only limit the conclusions we can draw regarding the current
DNNs tested on prediction-based experiments and benchmarks
such as Brain-Score (at the time of writing over 200 DNNs
have been submitted to the Brain-Score leaderboard with models
spanning a wide variety of architectures and objective functions).
These problems will apply to any future model evaluated by
prediction-based experiments.

2.2. The practical problems with prediction when comparing
humans to convolutional neural networks (CNNs)

Apart from the principled problems of comparing DNNs to
humans using current prediction-based experiments, there are
also a variety of methodological issues that call into question
the conclusions that are often drawn. With regard to prediction-
based experiments on brain data, perhaps the most obvious prac-
tical problem is the relative scarceness of neural data on which the
claims are made. For example, as noted above, the Brain-Score
match to high-level vision in IT is based on five studies that
rely on a total of three monkeys presented with two very similar
image datasets. Similarly, the reports of high RSAs between
DNNs and human vision have largely relied on a small set of
studies, and these studies often suffer methodological limitations
(Xu & Vaziri-Pashkam, 2021). This raises the concern that

impressive predictions may not generalize to other datasets, and
indeed, there is some evidence for this. For example, Xu and
Vaziri-Pashkam (2021) used a more powerful fMRI design to
assess the RSA between DNNs and human fMRI for a new dataset
of images, including images of both familiar and novel objects.
They found the level of correspondence was much reduced com-
pared to past studies. For familiar objects, they failed to replicate
past reports that early layers of DNNs matched V1 processing best
and later layers of DNNs matched later layers of visual cortex best.
Instead, Xu and Vaziri-Pashkam only obtained high RSAs
between early levels of DNNs and V1.2 Similarly, with unfamiliar
objects, Xu and Vaziri-Pashkam failed to obtain any high DNN–
human RSA scores at any layers. These failures were obtained
across a wide range of DNNs, including CORnet-S that has
been described as the “current best model of the primate ventral
visual stream” (Kubilius et al., 2019, p. 1) based on its
Brain-Score. The impressive DNN–human RSAs reported in the
literature may evidently not generalize broadly. For similar out-
come in the behavioral domain see Erdogan and Jacobs (2017)
discussed in section 4.1.9.

Another problem is that DNNs that vary substantially in their
architectures support similar levels of predictions (Storrs et al.,
2021). Indeed, even untrained networks (models that cannot
identify any images) often support relatively good predictions
on these datasets (Truzzi & Cusack, 2020), and this may simply
reflect the fact that good predictions can be made from many
predictors regardless of the similarity of DNNs and brains
(Elmoznino & Bonner, 2022). Furthermore, when rank ordering
models in terms of their (often similar) predictions, different
outcomes are obtained with different datasets. For example,
there is only a 0.42 correlation between the two V1 benchmark
studies listed on the current Brain-Score leaderboard. Consider
just one network: mobilenet_v2_0.75_192 achieves a neural pre-
dictivity score of 0.783 on one V1 dataset (ranking in the top 10)
and 0.245 on another (outside the top 110). Given the contrast-
ing rankings, it is not sensible to conclude that one model does a
better job in predicting V1 activity by simply averaging across
only two benchmarks, and more generally, these considerations
highlight the problem of ranking networks based on different
scores.

In addition, there are issues with the prediction-based experi-
ments carried out on behavioral studies showing that DNNs and
humans make similar classification errors (e.g., Kheradpisheh,
Ghodrati, Ganjtabesh, & Masquelier, 2016; Kubilius, Bracci, & Op
de Beeck, 2016; Rajalingham et al., 2015, 2018; Tuli, Dasgupta,
Grant, & Griffiths, 2021). Geirhos, Meding, and Wichmann
(2020b) argue that the standard methods used to assess behavioral
correspondences have led to inflated estimates, and to address this
concern, they adapted an error consistency measure taken from psy-
chology and medicine where inter-rater agreement is measured by
Cohen’s kappa (Cohen, 1960). Strikingly, they reported near chance
trial-by-trial error consistency between humans and a range of
DNNs. This was the case even with CORnet-S that has one of the
highest overall behavioral Brain-Scores. More recently, error consis-
tency was found to improve in DNNs trained on much larger data-
sets, such as CLIP that is trained on 400 million images (Geirhos
et al., 2021). Nevertheless, the gap between humans and the best
performing DNN was substantial. For example, if you consider
the top 10 performing models on the Brain-Score leaderboard, the
error consistency between DNNs and humans for edge-filtered
images (images that keep the edges but remove the texture of
images) is 0.17. Clearly, the different methods used to measure
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behavioral consistency provide very different conclusions, and the
DNN–human correspondences for some types of images that
humans can readily identify remain very low.

3. The theoretical problem with DNNs as models of human
object recognition

Apart from the principled and practical problems with
prediction-based experiments, the general approach of modeling
human object recognition by optimizing classification perfor-
mance may be misguided for a theoretical reason, namely, the
human visual system may not be optimized to classify images.
For example, Malhotra, Dujmovic, Hummel, and Bowers (2021)
argue that the human visual system is unconcerned with the prox-
imal stimulus (the retinal image) except inasmuch as it can be
used to make inferences about the distal stimulus (the object in
the world) that gave rise to it. The advantage of distal representa-
tions is that they afford a wide range of capacities beyond image
classification, including visual reasoning (e.g., Hummel, 2013).
The downside is that constructing distal representations is an ill-
posed problem, meaning it cannot be solved based on the statis-
tics available in the proximal stimuli alone, or in the mapping
between the proximal stimulus and, say, an object label.
Accordingly, on this view, the visual system relies on various heu-
ristics to estimate the distal properties of objects, and these heu-
ristics reveal themselves in various ways, including Gestalt rules
of perceptual organization (see sect. 4.2.3) and shape-processing
biases (see sect. 4.1.4). It is unclear whether the relevant heuristics
can be learned by optimizing classification performance, and at
any rate, current DNNs do not acquire these heuristics, as dis-
cussed below.

Furthermore, even if building distal representations from heu-
ristics is a misguided approach to understanding human object
recognition, it is far from clear that optimizing on classification
is the right approach. Indeed, evolution (which may be considered
as an optimization process) rarely (if ever) produces a cognitive or
perceptual system in response to a single-selection pressure.
Rather, evolution is characterized by “descent through modifica-
tion” with different selection pressures operating at different
times in our evolutionary history (Marcus, 2009; Zador, 2019).
This results in solutions to complex problems that would never
be found if a single-selection process was operative from the
start. Marcus (2009) gives the example of the human injury-prone
spinal column that was a modification of a horizontal spine
designed for animals with four legs. Better solutions for bipedal
walkers can be envisaged, but the human solution was constrained
by our ancestors. See Marcus (2009) for a description of the many
foibles of the human mind that he attributes to a brain designed
through descent with modification.

Furthermore, evolutionary algorithms can produce solutions
to complex problems when there is no selection pressure to
solve the problem at all. For example, Lehman and Stanley
(2011) used evolutionary algorithms to produce virtual robots
that walked. Under one condition the selection pressure was to
walk as far as possible and in another the selection pressure was
behavioral “novelty,” that is, robots that did something different
from all other robots. Despite the lack of any selection pressure
to walk, the latter robots walked further. Lehman and Stanley
(2011) reported similar outcomes in other domains such as solv-
ing mazes, with virtual robots selected to produce novel behaviors
doing much better than models selected to solve mazes.
Moreover, compared to selecting for the desired outcome directly,

novelty search evolved more complex and qualitatively different
representations (Woolley & Stanley, 2011). The explanation for
these counterintuitive findings is that the search environment is
often “deceptive,” meaning that optimizing on the ultimate objec-
tive will often lead to dead ends. In some cases, the only way to
find a solution to an objective (e.g., walking) is to first evolve
an archive of architectures and representations that may all appear
irrelevant to solving the objective (so-called “stepping stones”;
Stanley, Clune, Lehman, & Miikkulainen, 2019), and it may
require different selection pressure(s) than optimizing for the
objective itself.

Even though the human visual system is the product of multi-
ple selection pressures, all the top-performing models on
Brain-Score and related prediction-based experiments were just
optimized to classify objects. Of course, these DNNs do have
“innate” structures generally composed of a collection of convolu-
tion and pooling operators, but these structures are largely chosen
because they improve object recognition on ImageNet and other
image datasets. Furthermore, despite the fact that convolutions
and pooling are loosely inspired by neuroscience, the architec-
tures of DNNs are radically different from brain structures in
countless ways (Izhikevich, 2004), including the fact that (1) neu-
rons in the cortex vary dramatically in their morphology whereas
units in DNNs tend to be the same apart from their connection
weights and biases, and (2) neurons fire in spike trains where
the timing of action potentials matter greatly whereas there is
no representation of time in feed-forward or recurrent DNNs
other than processing steps. This is even more so for recent
state-of-the-art transformer models of object recognition (Tuli
et al., 2021) that do not even include innate convolution and pool-
ing operators.

It is not a safe assumption that these (and countless other) dif-
ferent starting points do not matter, and that optimizing on clas-
sification will bridge the difference between DNNs and human
object recognition. Similarly, more recent self-supervised net-
works are first optimized to predict their visual inputs and only
subsequently optimized to classify the images, but again, it is
far from clear that self-supervision provides the right starting
point to optimize on classification. A related critique has been
applied to Bayesian theories in psychology and neuroscience
according to which minds and brains are (near) optimal in solv-
ing a wide range of tasks. Again, little consideration is given to
descent with modification or physiological constraints on solu-
tions, and this can lead to “just so” stories where models account
for human performance on a set of tasks despite functioning in
qualitatively different ways (Bowers & Davis, 2012a, 2012b; for
response see Griffiths, Chater, Norris, & Pouget, 2012).

This theoretical concern should be considered in the context of
the principled and practical problems of evaluating models on
prediction-based experiments on behavioral and brain studies.
That is, it is not only possible that DNNs and humans identify
objects in qualitatively different ways despite good predictions,
but there are also good reasons to expect that they do. As we
show next, the empirical evidence strongly suggests that current
DNNs and humans do indeed identify objects in very different
ways.

4. The empirical problem with claiming DNNs and human
vision are similar

These principled, practical, and theoretical issues do not rule out
the possibility that current DNNs are good or even the current
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best models of human vision and object recognition. Rather, they
imply that the evidence from this approach is ambiguous and
strong conclusions are not yet justified. What is needed are con-
trolled experiments to better characterize the mechanisms that
support DNN and human object recognition.

In fact, some researchers have assessed how well models
account for the results of controlled experiments in psychology
in which images have been manipulated to test specific hypothe-
ses. In some cases the behavior of a model (i.e., the model’s out-
put) is compared with human behavior, and in other cases, the
activations of hidden units within a model are compared to per-
ceptual phenomena reported by humans. Although these findings
are largely ignored by modelers focused on brain-prediction stud-
ies, it is striking how often these studies highlight stark discrepan-
cies between DNNs and humans, and how informative these
studies are for developing better models of human vision. In
this section, we review multiple examples of DNNs failing to
account for key experimental results reported in psychology. We
also review key psychological phenomena that have largely been
ignored and that require more investigation.

4.1. Discrepancies

4.1.1. DNNs are highly susceptible to adversarial attacks
Adversarial images provide a dramatic example of an experimental
manipulation that reveals a profound difference between human
and DNN object recognition. Adversarial images can be generated
to look unfamiliar to humans but that nevertheless fool DNNs into
confidently classifying them as members of familiar categories (see
Fig. 6). These images do not appear in behavioral benchmarks such

as those used in Brain-Score, and if they were, they would under-
mine any claim that humans and DNNs make similar errors
when classifying images. Some researchers have pointed out that
humans experience visual illusions, and adversarial attacks might
just be considered a form of illusion experienced by DNNs
(Kriegeskorte, 2015). However, these “illusions” are nothing like
the illusions experienced by humans. Although there have been
some reports that humans and DNNs encode adversarial images
in a similar way (Zhou & Firestone, 2019), careful behavioral stud-
ies show this is not the case (Dujmović, Malhotra, & Bowers, 2020).
There has been some limited success at making DNNs more robust
to adversarial attacks by explicitly training models to not classify
these images as familiar categories. But it is not necessary to
train humans in this way. What is needed is a psychologically plau-
sible account that fully addresses the problem.

4.1.2. DNNs often classify images based on texture rather than
shape
A fundamental conclusion from psychological research is that
humans largely rely on shape when identifying objects. Indeed,
adults classify line drawings of objects as quickly as colored pho-
tographs (Biederman & Ju, 1988), and infants can recognize line
drawings the first time they are seen (Hochberg & Brooks, 1962).
Accordingly, a model of human object recognition should largely
rely on shape when classifying objects. However, this is not the
case for most DNN models that perform well on Brain-Score
and other prediction metrics. For example, Geirhos et al. (2019)
developed a “style transfer” dataset where the textures of images
from one category were superimposed on the shapes of images
from other categories (e.g., a shape of a cat with the texture of

Figure 6. Example of adversarial images for three differ-
ent stimuli generated in different ways. In all cases the
model is over 99% confident in its classification.
Images taken from Nguyen, Yosinski, and Clune (2015).

Figure 7. Illustration of a style-transfer image in which (a) the texture of an elephant and (b) the shape of a cat that combine to form (c) the shape of a cat with the
texture of an elephant. The top three classifications of a DNN to the three images are listed below each image, with the model classifying the style-transfer image as
an elephant with 63.9% confidence (the cat is not in the top three choices of the DNN that together account for 99.9% of its confidence). Images taken from Geirhos
et al. (2019).
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an elephant) to assess the relative importance of texture versus
shape on object recognition. Unlike humans, DNNs trained on
natural images relied more on texture (e.g., classifying a cat–ele-
phant image as an elephant; see Fig. 7). Indeed, the CORnet-S
model described as one of the best models of human vision
largely classifies objects based on texture (Geirhos et al., 2020b),
and this contrast between DNNs and humans extends to children
and adults (Huber, Geirhos, & Wichmann, 2022; but see Ritter,
Barrett, Santoro, & Botvinick, 2017, for the claim that DNNs
have a human-like shape-bias).

More recently, Malhotra et al. (2022) compared how DNNs
and humans learn to classify a set of novel stimuli defined by
shape as well as one other nonshape diagnostic feature (including
patch location and segment color as shown in Fig. 8). Humans
showed a strong shape-bias when classifying these images, and
indeed, could not learn to classify the objects based on some non-
shape features. By contrast, DNNs had a strong bias to rely on
these very same nonshape features. Importantly, when the
DNNs were pretrained to have a shape bias (by learning to classify
a set of images in which shape but not texture was diagnostic of
object category), the models nevertheless focused on nonshape
features when subsequently trained to classify these stimuli.
This was the case even after freezing the convolutional layers of
a shape-biased ResNet50 (i.e., freezing 49 of the 50 layers of the
DNN). This suggests that the contrasting shape biases of DNNs
and humans is not the product of their different training histories
as sometimes claimed (Hermann, Chen, & Kornblith, 2020).

4.1.3. DNNs classify images based on local rather than global
shape
Although DNNs rely more on texture than shape when classifying
naturalistic images (images in which both shape and texture are
diagnostic of category), several studies have shown that modifying
the learning environment (Geirhos et al., 2019; Hermann et al.,
2020) or architecture (Evans, Malhotra, & Bowers, 2022) of
DNNs can increase the role of shape in classifying naturalistic
images. Nevertheless, when DNNs classify objects based on
shape, they use the wrong sort of shape representations. For
instance, in contrast to a large body of research showing that
humans tend to rely on the global shape of objects, Baker, Lu,
Erlikhman, and Kellman (2018b) showed that DNNs focus on
local shape features. That is, they found that DNNs trained on
ImageNet could correctly classify some silhouette images (where

all diagnostic texture information was removed), indicating that
these images were identified based on shape. However, when
the local shape features of the silhouettes were disrupted by
including jittered contours, the models functioned much more
poorly. By contrast, DNNs were more successful when the parts
of the silhouettes were rearranged, a manipulation that kept
many local shape features but disrupted the overall shape.
Humans show the opposite pattern (see Fig. 9).

4.1.4. DNNs ignore the relations between parts when classifying
images
Another key property of human shape representations is that the
relations between object parts play a key role in object recognition.
For example, Hummel and Stankiewicz (1996) trained partici-
pants to identify a set of “basis” objects that were defined by
their parts and the relation between the parts, and then assessed
generalization on two sets of images: (1) Relational variants that
were highly similar in terms of pixel overlap but differed in a cat-
egorical relation between two parts, and (2) pixel variants that dif-
fered more in terms of their pixel overlap but shared the same set
of categorical relations (see Fig. 10). Across five experiments par-
ticipants frequently mistook the pixel variants as the basis objects
but rarely the relational variants, indicating that the human visual
system is highly sensitive to the relations. By contrast, when
DNNs were trained on the basis objects, the models mistook
both the relational and pixel variants as the basis objects and
were insensitive to the relations (Malhotra et al., 2021). This
was the case even after explicitly training the DNNs on these
sorts of relations. As noted by Malhotra et al., the human encod-
ing of relations between object parts may be difficult to achieve
with current DNNs and additional mechanisms may be required.

4.1.5. DNNs fail to distinguish between boundaries and surfaces
In human vision boundaries and surfaces of objects are processed
separately and then combined early in the visual processing
stream to perceive colored and textured objects. This separation
is observed in V1 with neurons in the “interblobs” system coding
for line orientations independent of color and contrast and neu-
rons in a “blob” system coding for color in a way that is less
dependent on orientation (Livingstone & Hubel, 1988). A wide
variety of color, lightness, and shape illusions are the product of
the interactions between these two systems (Grossberg &
Mingolla, 1985), with no explanation offered in DNNs that fail

Figure 8. Examples of novel stimuli defined by shape as well as one other nonshape feature. In (a) global shape and location of one of the patches define a cat-
egory, and for illustration, the predictive patch is circled. Stimuli in the same category (top row) have a patch with the same color and the same location, while
none of the stimuli in any other category (bottom row) have a patch at this location. In (b) global shape and color of one of the segments predicts stimulus cat-
egory. Only stimuli in the same category (top row) but not in any other category (bottom row) have a segment of this color (red). The right-most stimulus in the top
row shows an example of an image containing a nonshape feature (red segment) but no shape feature. Images taken from Malhotra et al. (2022).
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to factorize shape and color in two parallel streams. See Figure 11
for a striking example of surface filling-in from boundaries.
Importantly, filling-in occurs early, such that illusory surfaces
can “pop-out,” a signature that the process occurs before an atten-
tional bottleneck constrains parallel visual processing
(Ramachandran, 1992). The entanglement of shape and color rep-
resentations in convolutional neural networks (CNNs) may also
help explain why DNNs do not have a strong shape bias when
classifying objects.

4.1.6. DNNs fail to show uncrowding
Our ability to perceive and identify objects is impaired by the
presence of nearby objects and shapes, a phenomenon called
crowding. For instance, it is much easier to identify the letter X
in peripheral vision if it is presented in isolation compared to
when it is surrounded by other letters, even if one knows where
the letter is located. A more surprising finding is uncrowding,
where the addition of more surrounding objects makes the iden-
tification of the target easier. Consider Figure 12 where partici-
pants are asked to perform a vernier discrimination task by
deciding whether the top vertical line from a pair of vertical
lines is shifted to the left or right. Performance is impaired
when these lines are surrounded by a square rather than presented
by themselves, an example of crowding. However, performance is
substantially improved by the inclusion of additional squares,
highlighting the role of long-range Gestalt-like processes in
which the squares are grouped together and then processed sep-
arately from the vernier (Saarela, Sayim, Westheimer, & Herzog,
2009). Standard DNNs are unable to explain uncrowding, but
the LAMINART model of Grossberg and colleagues (e.g.,

Raizada & Grossberg, 2001) designed to support grouping pro-
cesses can capture some aspects of uncrowding (Francis,
Manassi, & Herzog, 2017). Like the failure of DNNs to capture
global shape, DNNs do not appear to encode the global organiza-
tion of objects in a scene.

4.1.7. DNNs are poor at identifying degraded and deformed
images
Humans can identify objects that are highly distorted or highly
degraded. For instance, we can readily identify images of faces
that are stretched by a factor of four (Hacker & Biederman,
2018), when images are partly occluded or presented in novel
poses (Biederman, 1987), and when various sorts of visual noise
are added to the image (Geirhos et al., 2021). By contrast,
CNNs are much worse at generalizing under these conditions
(Alcorn et al., 2019; Geirhos et al., 2018, 2021; Wang et al.,

Figure 9. Illustration of (a) a silhouette image of a camel, (b) and image of a camel in which local shape features were removed by including jittered contours, and
(c) and image of a camel in which global shape was disrupted. The DNNs had more difficulty under conditions (b) than (c). Images taken from Baker et al. (2018b).

Figure 10. Example of (a) a basis object, (b) a relational variant object that was iden-
tical to the basis object except that one line was moved so that its “above/below”
relation to the line to which it was connected changed (from above to below or vice-
versa), as highlighted by the circle, and (c) a pixel variant object that was identical to
the basis object except that two lines were moved in a way that preserved the cate-
gorical spatial relations between all the lines composing the object, but changed the
coordinates of two lines, as highlighted by the oval. Images taken from Malhotra
et al. (2021).

Figure 11. Phenomenon of filling-in suggests that edges and textures are initially pro-
cessed separately and then combined to produce percepts. In this classic example
from Krauskopf (1963), an inner green disk (depicted in white) is surrounded by a
red annulus (depicted in dark gray). Under normal viewing conditions the stimulus
at the top left leads to the percept at the top right. However, when the red-green
boundary was stabilized on the retina as depicted in the figure in the lower left, sub-
jects reported that the central disk disappeared and the whole target – disk and
annulus – appeared red, as in lower right. That is, not only does the stabilized
image (the green-red boundary) disappear (due to photo-receptor fatigue), but the
texture from the outer annulus fills-in the entire surface as there is no longer a boun-
dary to block the filling-in process. For more details see Pessoa, Tompson, and Noe
(1998).
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2018; Zhu, Tang, Park, Park, & Yuille, 2019). It should be noted
that the larger DNNs do better on degraded images (e.g., CLIP
trained on 400 million images), but the types of errors the models
make are still very different than humans (Geirhos et al., 2021).

4.1.8. DNNs have a superhuman capacity to classify unstructured
data
While CNNs are too sensitive to various perturbations to objects,
CNNs can learn to classify noise-like patterns at a superhuman
level. For example, Zhang, Bengio, Hardt, Recht, and Vinyals
(2017) trained standard DNNs with ∼1 million images composed
of random pixel activations (TV static-like images) that were ran-
domly assigned to 1,000 categories. This shows that DNNs have a
much greater capacity to memorize random data compared to
humans, and this excess capacity may be exploited by DNNs to
identify naturalistic images.

Tsvetkov, Malhotra, Evans, and Bowers (2020, 2023) reduced
the memorization capacities of DNNs by adding noise to the acti-
vation function (mirroring noise in neural activation), a bottle-
neck after the input canvas (analogous to the optic nerve where
there are approximately 100 times fewer ganglion cells compared
to photoreceptors), and using sigmoidal units that bound activa-
tion rather than rectified linear units common in state-of-the-art
DNNs that can take on unbounded activation values. These mod-
ifications resulted in DNNs that were much better at learning to
classify images from the CIFAR10 dataset compared to learning
to classify random noise, consistent with human performance.
At the same time, these networks were no better at classifying
degraded CIFAR10 images. One challenge going forward will be
to design DNNs that fail to learn random data but can identify
degraded and deformed naturalistic images.

4.1.9. DNNs do not account for human similarity judgments for
novel three-dimensional (3D) shapes
There are various reports that DNNs provide a good account of
human similarity judgments for familiar categories (Peterson,
Abbott, & Griffiths, 2018; but see Geirhos et al., 2020a).
However, similarity judgments break down for unfamiliar objects.
For example, German and Jacobs (2020) measured human simi-
larity judgments between pairs of novel part-based naturalistic
objects (fribbles) presented across multiple viewpoints. These
judgments were then compared with the similarities observed in
DNNs in response to the same stimuli. Overall, the degree of
DNN–human similarity was only slightly better than would be
predicted from a pixel-based similarity score, with accuracy
near chance (under 58% with a baseline of 50%). Similar results
were obtained by Erdogan and Jacobs (2017) when they assessed
DNN–human similarity to novel 3D, cuboidal objects. The best
similarity score was somewhat higher (64% with a baseline of
50%) and better than pixel-based similarity score, but much
lower than an alternative Bayesian model which reached an

accuracy of 87%. This no doubt relates to the observation that
DNNs do not represent the relations between object parts
(Malhotra et al., 2021), a likely factor in the human similarity
judgments for these multi-part 3D unfamiliar stimuli. Note,
these behavioral outcomes are in line with the Xu and
Vaziri-Pashkam (2021) results described above where they
found that RSA scores between DNNs and fMRI signals were
especially poor for unfamiliar objects.

4.1.10. DNNs fail to detect objects in a human-like way
Humans and CNNs not only classify objects but can also detect
(and locate) objects in a scene. In the case of humans, there
was an early report that object detection and object recognition
occur at the same processing step in the visual system with
Grill-Spector and Kanwisher (2005) concluding “as soon as you
know it is there, you know what it is.” Subsequent research
addressed some methodological issues with this study and showed
that humans can detect an object before they know what it is
(Bowers & Jones, 2007; Mack, Gauthier, Sadr, & Palmeri, 2008).
With regard to DNNs, there are multiple different methods of
object detection, but in all cases we are aware of, detection
depends on first classifying objects (e.g., Redmon, Divvala,
Girshick, & Farhadi, 2016; Zhao, Zheng, Xu, & Wu, 2019).
Why the difference? In the case of humans there are various low-
level mechanisms that organize a visual scene prior to recognizing
objects: Edges are assigned to figure or ground (Driver & Baylis,
1996), depth segregation is computed (Nakayama, Shimojo, &
Silverman, 1989), nonaccidental properties such as collinearity,
curvature, cotermination, and so on are used to compute object
parts (Biederman, 1987). These processes precede and play a
causal role in object recognition, and these earlier processes pre-
sumably support object detection (explaining why detection is
faster). The fact that CNNs recognize objects before detecting
them suggests that they are lacking these earlier processes so cen-
tral to human vision.

4.1.11. DNNs fail in same/different reasoning
The human visual system not only supports object recognition,
but also visual reasoning (Hummel, 2000). Perhaps the simplest
visual reasoning task is deciding whether two images are the
same or different. Although there have been some recent reports
that DNNs can support same/different judgments (Funke et al.,
2021; Messina, Amato, Carrara, Gennaro, & Falchi, 2021) the
models were only tested on images that were very similar to the
training set. Puebla and Bowers (2022) provided a stronger test
of whether DNNs support human-like same/different reasoning
by testing DNNs on stimuli that differed from the training set
(see Fig. 13 for examples of images). The models failed when
they were trained on stimuli taken from the set illustrated in
the left-most panel of Figure 13 and tested on most other sets.
Indeed, models failed on some test sets when trained to perform

Figure 12. (a) Under the standard vernier discrimination conditions two vertical lines are offset, and the task of the participant is to judge whether the top line is to
the left or right of the bottom line. (b) Under the crowding condition the vernier stimulus is surrounded by a square and discriminations are much worse. (c) Under
the uncrowding condition a series of additional squares are presented. Performance is much better here, although not as good as in (a).
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same/different judgments on stimuli from all sets but the test set.
Even a network specifically designed to support visual relational
reasoning, namely a relation network (Santoro et al., 2017), failed
on some stimulus sets when trained on all others. For humans this
is trivial without any training on the same/different task for any
stimulus set.

4.1.12. DNNs are poor at visual combinatorial generalization
There are various reports that DNNs can support combinatorial
generalization, but performance breaks down when more chal-
lenging conditions are tested. For example, Montero, Ludwig,
Costa, Malhotra, and Bowers (2021) explored whether DNNs
that learn (or are given) “disentangled” representations (units
that selectively encode one dimension of variation in a dataset)
support the forms of combinatorial generalization that are trivial
for humans. Despite the claim that disentangled representations
support better combinatorial generalization (e.g., Duan et al.,
2019), Montero et al. found a range of variational autoencoders
trained to reproduce images succeeded under the simplest condi-
tions but failed in more challenging ones. Indeed, DNNs with dis-
entangled representations were no better than models using
entangled (or distributed) representations. For example, after
training to reproduce images of shapes on all locations except
for squares on the right side of the canvas, the models were unable
to do so at test time, even though they had observed squares at
other positions and other shapes at the right side. These results
were consistent across other factor combinations and datasets
and have been replicated using other training mechanisms and
models (Schott et al., 2021). More recently, Montero, Bowers,
Ludwig, Costa, and Malhotra (2022) have shown that both the
encoder and decoder components of variational autoencoders
fail to support combinatorial generalization, and in addition, pro-
vide evidence that past reports of successes were in fact not exam-
ples of combinatorial generalization. There are still other models
that appear to support combinatorial generalization under related
conditions (Burgess et al., 2019; Greff et al., 2019), and it will be
interesting to test these models under the conditions that disen-
tangled models failed.

This pattern of success on easier forms of combinatorial gen-
eralization but failure on more challenging forms is common. For
example, Barrett, Hill, Santoro, Morcos, and Lillicrap (2018)
assessed the capacity of various networks to perform
Raven-style progressive matrices, a well-known test of human
visual reasoning. Although the model did well under some condi-
tions, the authors noted that a variety of state-of-the-art models
(including relational networks designed to perform well in

combinatorial generalization) did “strikingly poorly” when more
challenging forms of combinatorial generalization were required.
As noted by Greff, van Steenkiste, and Schmidhuber (2020), com-
binatorial generalization may require networks that implement
symbolic processes through dynamic binding (currently lacking
in DNNs) and they emphasize that better benchmarks are
required to rule out any forms of shortcuts that DNNs might
exploit (also see Montero et al., 2022, who identify conditions
in which models appear to solve combinatorial tasks but fail
when tested appropriately).

4.1.13. Additional failures on object recognition tasks
Perhaps the most systematic attempt to date to compare DNNs to
psychological phenomena was carried out by Jacob, Pramod,
Katti, and Arun (2021). They reported some correspondences
between humans and DNNs (described in sect. 4.2.8), but also
a series of striking discrepancies. Among the failures, they showed
DNNs trained on ImageNet do not encode the 3D shape of
objects, do not represent occlusion or depth, and do not encode
the part structure of objects. For example, to investigate the rep-
resentations of 3D shape, the authors presented pairs of images
such as those in Figure 14 to DNNs. Humans find it easier to dis-
tinguish between the pair of images at the top of the figure com-
pared to the pairs at the bottom even though each pair is
distinguished by the same feature difference. The explanation is
that humans perceive the former pair as 3D that take on different
orientations whereas the latter stimuli are perceived as two-

Figure 13. Example stimuli taken from nine different stimulus sets, with the same trials depicted on the top row, different trials on the bottom. The level of sim-
ilarity between stimulus sets varied, with the greatest overlap between the irregular and regular sets, and little overlap between the irregular set on the one hand
and the lines or arrow datasets on the other. Image taken from Puebla and Bowers (2022).

Figure 14. For humans the perceptual distance between the top pair of figures
(marked d1) is larger than the perceptual distance between the two pairs of objects
on the bottom (marked d2). For DNNs, the perceptual distance is the same for all
pairs. Images taken from Jacob et al. (2021).
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dimensional (2D). By contrast, DNNs do not represent the former
pair as more dissimilar, suggesting that the models did not
improve on the 3D structure of these stimuli. Relatedly, Heinke,
Wachman, van Zoest, and Leek (2021) showed that DNNs are
poor at distinguishing between possible and impossible 3D
objects, again suggesting DNNs fail to encode 3D object shape
geometry.

4.2. Key experimental phenomena that require more study
before any conclusions can be drawn

There are also a wide range of important psychological findings in
vision that have received little consideration when assessing the
similarities between human vision and DNNs. In a few of these
cases there is some evidence that DNNs behave like humans,
but the results remain preliminary and require more study before
any strong conclusions are warranted. Here we briefly review
some phenomena that should be further explored.

4.2.1. Perceptual constancies
Human vision supports a wide range of visual constancies, includ-
ing color, shape, and lightness constancies, where perceptual
judgments remain stable despite changes in retinal input. For
example, we often perceive the color of an object as stable despite
dramatic changes in lighting conditions that change the wave-
lengths of light projected onto the retina. Similarly, we tend to
perceive the size of an object as stable despite radical changes
in the size of the retinal image when the object is viewed from
nearby or far away. Perceptual constancies are critical to the visual
system’s ability to transform a proximal image projected on the
retina into a representation of the distal object. Various forms
of perceptual learning appear to operate on constancy-based per-
ceptual representations rather than early sensory representations
(Garrigan & Kellman, 2008). By contrast, it is not clear to what
extent DNNs support perceptual constancies. Current evidence
suggests that they do not, given that DNNs tend to learn the sim-
plest regularities present in the input (e.g., Malhotra et al., 2021;
Shah, Tamuly, Raghunathan, Jain, & Netrapalli, 2020), and conse-
quently, often learn shortcuts (Geirhos et al., 2020a).

4.2.2. Online invariances
Human vision supports various visual invariances such that
familiar objects can be identified when presented at novel scales,
translations, and rotations in the image plane, as well as rotations
in depth. Furthermore, these invariances extend to untrained

novel objects – what is sometimes called “online” invariance or
tolerance (Blything, Biscione, & Bowers, 2020; Bowers, Vankov,
& Ludwig, 2016). Although DNNs can be trained (Biscione &
Bowers, 2021; Blything, Biscione, Vankov, Ludwig, & Bowers,
2021) or their architectures modified (Zhang, 2019) to support
a range of online invariances, there are no experiments to date
that test whether these models support invariance in a human-like
way.

4.2.3. Gestalt principles
A wide range of Gestalt rules play a central role in organizing
information in visual scenes, including organization by proximity,
similarity, continuity, connectedness, and closure. That is, we do
not just see the elements of a scene, we perceive patterns or con-
figurations among the elements, such that “the whole is more
than the sum of its parts.” This is not unique to the human cog-
nitive architecture as some nonhuman animals show Gestalt
effects (Pepperberg & Nakayama, 2016). Gestalt rules are not
just some curiosity, they play a fundamental role in how we rec-
ognize objects by organizing the components of a scene
(Biederman, 1987; Palmer, 2003; Wagemans et al., 2012). There
are a few reports that DNNs are sensitive to closure (Kim, Reif,
Wattenberg, & Bengio, 2021), although local features may mediate
these effects (Baker, Kellman, Erlikhman, & Lu, 2018a; Pang,
O’May, Choksi, & VanRullen, 2021), and these effects only
occur in the later layers of the network (whereas Gestalt closure
effects can be detected in early human vision; Alexander & Van
Leeuwen, 2010). Biscione and Bowers (2022) provided some addi-
tional evidence that DNNs trained on ImageNet are indeed
(somewhat) sensitive to closure in their later layers, but these
same networks failed to support the Gestalt effects of orientation,
proximity, and linearity, as illustrated in Figure 15. More work is
needed to characterize which (if any) Gestalt effects are manifest
in current DNNs. It is possible that differences in perceptual
grouping processes may play a role in several additional DNN–
human discrepancies, such as the failure of DNNs to identify
objects based on global features, the failure of DNNs to show
uncrowding, or the fact that DNNs classify objects before they
detect them.

4.2.4. Illusions
Another obvious and striking feature of human vision is the range
of visual illusions we experience. There are a few reports that some
predictive coding models (e.g., PredNet) display some human-like
illusions (e.g., Lotter, Kreiman, & Cox, 2020), although again,

Figure 15. Pomerantz and Portillo (2011) measured Gestalts by constructing a base pair of images (two dots in different locations) and then adding the same
context stimulus to each base such that the new image pairs could be distinguished not only using the location of the dots in the base, but also the orientation,
linearity, or proximity of the dots. They reported that human participants are faster to distinguish the pair of stimuli under the latter conditions than under the base
condition. By contrast, the various DNNs, including DNNs that perform well on Brain-Score, treat the pairs under the orientation, linearity, and proximity conditions
as more similar. Images taken from Biscione and Bowers (2023).
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more work is needed to determine the extent of the similarity, and
most illusions have been given no consideration. By contrast, illu-
sions have been central to the development of theories and mod-
els of vision in psychology (most notably by Grossberg; for an
excellent and accessible review, see Grossberg, 2021) because
they provide insight into the way that lightness, color, shape,
occlusion, and other stimulus features are used and combined
by the human visual system. Interesting, although PredNet cap-
tures a number of psychological findings better than standard
DNNs, it performs poorly on Brain-Score, currently ranked 177
out of 216 models listed, and Grossberg’s models are not even
image computable.

4.2.5. Limits in visual short-term memory capacity and attention
There is a variety of evidence suggesting that the visual system
attends and encodes approximately four items at a time in short-
term memory (Cowan, 2001; Pylyshyn & Storm, 1988; Sperling,
1960). For example, in “multi-object tracking” experiments, mul-
tiple dots or objects move around in a display and participants
need to track the movement of a subset of them. Participants gen-
erally track about four items (Pylyshyn & Storm, 1988). Similarly,
limits in visual attention are highlighted in visual search experi-
ments in which response times to targets among distractors varies
with the visual properties of the target and distractor items
(Duncan & Humphreys, 1989; Wolfe, 1994; Wolfe et al., 1989).
For example, a search for a target that differs from the distractors
by one easily discriminable feature tends to proceed in a parallel
fashion with no difference in response time as a function of set
size, whereas a search for a target that can only be distinguished
from distractors by a conjunction of multiple features tends to
take longer as a function of the number of items in the display,
suggesting serial attentional processing of the items until the tar-
get is found (Triesman & Gelade, 1980). Various manifestations
of limited short-term memory and attention can be observed in
human object recognition and scene processing, including change
blindness where (sometimes large) changes in scenes go unno-
ticed (Simons & Levin, 1997), and illusory conjunctions in
which features of one object are bound to the features of another
(e.g., when briefly flashing an image containing a blue square and
red circle, participants will sometimes report seeing a red square
and blue circle; Treisman & Schmidt, 1982).

However, there is no analogous visual short-term memory
constraint in feedforward DNNs, and we are not aware of any
reports that recurrent DNNs manifest any of the human errors
that reflect biological visual short-term memory and attention
constraints. While some recurrent attention networks (RANs)
have attempted to address the problem of serial attentional selec-
tion via glimpse mechanisms (Ba et al., 2014; Mnih et al., 2014;
Xu et al., 2015), such mechanisms do not provide an account of
the influence of item features on processing, nor the associated
response time effects.

4.2.6. Selective neuropsychological disorders in vision
The key insight from cognitive neuropsychology is that brain
damage can lead to highly selective visual disorders. Perhaps
the most well-known set of findings is that acquired dyslexia
selectively impairs visual word identification whereas prosopag-
nosia selectively impairs face identification, highlighting how dif-
ferent systems are specialized for recognizing different visual
categories (Farah, 2004). Similarly, lesions can selectively impact
vision for the sake of identifying objects versus vision for the
sake of action in the ventral and dorsal visual systems, respectively

(Goodale & Milner, 1992). Various forms of visual agnosia have
provided additional insights into how objects are identified
(Farah, 2004), and different forms of acquired alexia have pro-
vided insights into the processes involved in visual word identifi-
cation (Miozzo & Caramazza, 1998). In addition, selective
disorders in motion (Vaina, Makris, Kennedy, & Cowey, 1988)
and color perception (Cavanagh et al., 1998) have provided fur-
ther insights into the organization of the visual system. Few stud-
ies have considered whether these selective deficits can be
captured in DNNs despite the ease of carrying out lesion studies
in networks (for some recent investigations, see Hannagan et al.,
2021; Ratan Murty et al., 2021).

4.2.7. Computing shape from nonshape information
Shape is the primary feature that humans rely on when classifying
objects, but there are notable examples of recognizing objects
based on nonshape features. Classic examples include computing
shape from shading (Ramachandran, 1988) and structure from
motion (Ullman, 1979). These findings provide important infor-
mation about how various forms of information are involved and
interact in computing shape for the sake of object recognition in
humans, but this work has been given little consideration when
developing DNNs of vision. For some early work with connec-
tionist networks, see Lehky and Sejnowski (1988), and for some
recent work with DNNs in this general direction, see Fleming
and Storrs (2019).

4.2.8. Four correspondences reported by Jacob et al. (2021)
As discussed above, Jacob et al. (2021) identified several dissimi-
larities between DNNs and humans. They also reported four
behavioral experiments that they took as evidence of important
similarities, but in all cases, the results lend little support for
their conclusion and more work is required. First, the authors
report that both DNNs and humans respect Weber’s law, accord-
ing to which the just noticeable difference between two stimuli is a
constant ratio of the original stimulus. However, the conditions
under which Weber’s law was assessed in humans (reaction
times in an eye-tracking study) and DNNs (the Euclidean
distance similarity between activation values in hidden layers)
were very different, and DNNs only manifest this effect for one
of the two stimulus dimensions tested (line lengths but not
image intensities). Furthermore, DNNs only supported a
Weber’s law effect at the highest convolutional layers, whereas
in humans, these effects are the product of early vision (e.g.,
Van Hateren, 1993). Second, Jacob et al. found that DNNs, like
humans, are sensitive to scene incongruencies, with reduced
object recognition when objects are presented in unusual contexts
(e.g., an image of an axe in a supermarket). However, as noted by
Jacob et al., CNNs tend to be far more context-dependent than
humans, with DNNs failing to identify objects in unusual con-
texts, such as an elephant in a living room (Rosenfeld, Zemel,
& Tsotsos, 2018). Third, Jacob et al. reported that DNNs show
something analogous to the Thatcher effect in which humans
are relatively insensitive to a specific distortion of a face (the
inversion of the mouth) when the entire face is inverted.
However, they did not test a key feature of the Thatcher effect,
namely, that it is stronger for faces compared to similar distor-
tions for other categories of objects (Wong, Twedt, Sheinberg,
& Gauthier, 2010). Fourth, the authors reported that both
humans and DNNs find reflections along the vertical axis (mirror
reversals) more similar than reflections along the horizontal axis
(inverting an image). However, it is unclear how much weight
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should be given to this success given that both humans and DNNs
experience reflections along the vertical axis much more often. It
seems likely that any model that learns could account for this
finding.

In sum, many key psychological phenomena have largely been
ignored by the DNN community, and the few reports of interest-
ing similarities are problematic or require additional research to
determine whether the outcomes reflect theoretically meaningful
correspondences or are instead mediated by qualitatively different
processes. Furthermore, the few promising results are embedded
in a long series of studies that provide striking discrepancies
between DNNs and human vision (as summarized above).

5. Deep problems extend to neighboring fields

Although we have focused on DNN models of human vision, the
underlying problem is more general. For example, consider DNNs
of audition and natural language processing. As is the case with
vision, there is excitement that DNNs enable some predictive
accuracy with respect to human brain activity (e.g., Kell et al.,
2018; Millet et al., 2022; Schrimpf et al., 2021) but at the same
time, when models are tested against psychological findings,
they fail to support key human-like performance patterns (e.g.,
Adolfi et al., 2023; Feather et al., 2019; Weerts, Rosen, Clopath,
& Goodman, 2021). And again, the prediction-based experiments
used to highlight DNN–human similarities rely on datasets that
are not manipulated to test hypotheses about how the predictions
are made. For instance, Caucheteux, Gramfort, and King (2022)
report that the DNN GPT-2 that generates impressively coherent
text also predicts brain activation of humans who listen to 70 min
of short stories, with the correlation between the true fMRI
responses and the fMRI responses linearly predicted from the
model approaching 0.02 (or approximately 0.004 of the BOLD
variance). In addition, Caucheteux et al. highlight that these pre-
dictions correlate with subjects’ comprehension scores as assessed
for each story at a much higher level (r = 0.50, p < 10–15), and
based on this, the authors concluded: “Overall, this study shows
how deep language models help clarify the brain computations
underlying language comprehension.” However, given that the
stories were not systematically manipulated to test any hypothesis,
this correlation could have other causes, such as the frequency of
words in the stories. Indeed, when the correlation between actual
BOLD and predicted BOLD is approximately 0.02, there are
undoubtedly many confounding factors that could drive the latter
correlation.

Similarly, DNNs that generate coherent text also successfully
reproduce a range of human language behaviors, such as accu-
rately predicting number agreement between nouns and verbs
(Gulordava, Bojanowski, Grave, Linzen, & Baroni, 2018). Again,
this has led researchers to suggest that DNNs may be models of
human linguistic behavior (e.g., Pater, 2019). However, Mitchell
and Bowers (2020) show that such networks will also happily
learn number agreement in impossible languages within unnatu-
ral sentence structures, that is, structures that are not found within
any natural languages and which humans struggle to process. This
ability to learn impossible languages is similar to the ability of
DNNs to recognize ∼1 million instances of random TV-static
(sect. 4.1.8). In addition, when Mitchell and Bowers (2020) ana-
lyzed how knowledge was stored in these networks they found
overlapping weights supporting the natural and unnatural struc-
tures, again highlighting the nonhuman-like nature of the knowl-
edge learned by the networks. So again, running controlled

experiments that manipulate independent variables highlight
important differences between DNNs and humans. It is also
important to note that state-of-the-art DNNs of natural language
processing receive training that far exceeds any human experience
with languages (e.g., GPT-2 was trained on text taken from 45
million website links and GPT-3 was trained on hundreds of bil-
lions of words). This highlights how these DNNs are missing key
human inductive biases that facilitate the learning of natural lan-
guages but impair the learning of unstructured languages (some-
thing akin to a human language acquisition device).

Likewise, in the domain of memory and navigation, there are
multiple papers claiming that grid cells in the entorhinal–hippo-
campal circuit emerge in DNNs trained on path integration, that
is, estimating one’s spatial position in an environment by integrat-
ing velocity estimates. This is potentially an important finding
given that grid cells in the entorhinal–hippocampal circuit are
critical brain structures for navigation, learning, and memory.
However, it turns out that these results are largely driven by a
range of post-hoc implementation choices rather than principles
of neural circuits or the loss function(s) they might optimize
(Schaeffer et al., 2022). That is, when Schaeffer et al. systematically
manipulated the encoding of the target or various hyperpara-
meters, they found the results that were idiosyncratic to specific
conditions, and these conditions may be unrealistic. The problem
in all cases is that DNN–human similarities are quick to be high-
lighted and the conclusions are not supported when more system-
atic investigations are carried out.

6. How should we model human vision?

The appeal of DNNs is that they are an extraordinary engineering
success story, with models of object recognition matching or
exceeding human performance on some benchmark tests.
However, as we have argued, the claim that these models recog-
nize objects in a similar way to humans is unjustified. How can
DNNs be useful to scientists interested in modeling human object
recognition and vision more broadly? In our view, the first step is
to start building models of human object recognition and vision
that account for key experimental results reported in psychology
rather than ones that perform best on prediction-based experi-
ments. The approach should be the same as it is for all scientific
endeavors: Use models to test specific hypotheses about how a
system works.

6.1. Four different approaches to developing biologically
plausible models of human vision

If one accepts our argument that DNN models of human vision
should focus on accounting for experimental studies that manip-
ulate independent variables, it is still the case that very different
approaches might be pursued. In our view, all the following
approaches should be considered. The simplest transition would
be to continue to work with standard DNNs that perform well
in identifying naturalistic images but modify their architectures,
optimization rules, and training environments to better account
for key experimental results in psychology (many of which are
reviewed in sect. 4) as well as other datasets that assess key behav-
ior findings under controlled conditions (e.g., Crosby, Beyret, &
Halina, 2019). This would just involve moving from prediction-
based experiments to controlled ones. Key experiments from psy-
chology (as reviewed in sect. 4) could be tNote, that the authors of
Brain-Score (Schrimpf et al., 2020a, 2020b) have highlighted that
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more benchmarks will be added to the battery of tests, but the
problem remains that these and many other authors are making
strong claims based on current results, and when experiments
are added to the Brain-Score benchmark that do manipulate inde-
pendent variables (e.g., Geirhos et al., 2021), these manipulations
are ignored and the data are analyzed in a prediction-based anal-
ysis. Given that current DNNs designed to classify naturalistic
images account for almost no psychological findings, it is not
clear whether modifications of existing models will be successful,
but it is worth exploring, if only to highlight how very different
approaches are needed.

Another approach would be to abandon the DNNs that have
been built to support engineering objectives (such as performing
well on large datasets like ImageNet) and focus on networks
designed to account for key psychological phenomena directly.
For example, consider the work of Stephen Grossberg and col-
leagues, recently reviewed in an accessible book that avoids math-
ematics and focuses on intuitions (Grossberg, 2021). Their
models include inhibitory mechanisms designed to support
Weber law dynamics so that networks are sensitive to both
small visual contrasts as well as encoding a wide range of visual
intensities (the noise–saturation dilemma; Carpenter &
Grossberg, 1981); circuits to account for various grouping phe-
nomena that lead to illusory boundaries among other illusions
(Grossberg & Mingolla, 1987); complementary circuits for com-
puting boundaries and surfaces in order to explain the perception
of occluded objects, figure-ground organization, and a range of
additional visual illusions (Grossberg, 2000); adaptive resonance
theory (ART) networks that learn to classify new visual categories
quickly without catastrophically forgetting previously learned
ones (the stability–plasticity dilemma; Grossberg, 1980); among
other neural designs used to address core empirical findings.
Although these models cannot classify photographic images,
they provide more insights into how the human visual system
works compared to the DNNs that sit at the top of the
Brain-Score leaderboard.

Yet another approach (that overlaps in various ways with the
approaches above) would be to build models that support various
human capacities that current DNNs struggle with, such as
out-of-domain generalization and visual reasoning. That is, rather
than making DNNs more human-like in domains in which they
are already engineering successes (e.g., modifying DNNs that per-
form well on ImageNet so that they classify images based on
shape rather than texture), instead focus on addressing current
performance (engineering) failures (e.g., Francis et al., 2017;
George, 2017). For example, one long-standing claim is that sym-
bolic machinery needs to be added to neural networks to support
the forms of generalization that humans are capable of (Fodor &
Pylyshyn, 1988; Greff, van Steenkiste, & Schmidhuber, 2020;
Holyoak & Hummel, 2000; Marcus, 1998; Pinker & Prince,
1988). Interestingly, researchers who have long rejected symbolic
models have recently been developing models more in line with a
symbolic approach in an attempt to support more challenging
forms of visual reasoning and generalization (Sabour, Frosst, &
Hinton, 2017; Webb, Sinha, & Cohen, 2021; for some discussion,
see Bowers, 2017). Indeed, a range of different network architec-
tures have recently been advanced to support more challenging
forms of generalization (Doumas, Puebla, Martin, & Hummel,
2022; Graves et al., 2016; Mitchell & Bowers, 2021; Vankov &
Bowers, 2020) because any model of human vision will ultimately
have to support these skills. Of course, it is also necessary to assess
whether any successful models perform tasks in a human-like way

by testing how well the models explain the results from relevant
psychological experiments.

Yet another possible way forward is to use evolutionary algo-
rithms to build neural networks and see if human-like solutions
emerge. A key advantage of this approach is that neural network
architectures might be evolved that are hard to invent, and indeed,
it is sometimes argued that evolutionary algorithms may be the
fastest route to building artificial intelligence that rivals human
intelligence (e.g., Wang et al., 2020). However, with regard to
building models of the human visual system, this approach
faces a similar challenge to current DNN modeling, namely,
there is no reason to expect the evolved solutions will be similar
to human solutions. Indeed, as discussed above, the human visual
system is the product of many different and unknown selection
pressures applied over the course of millions of years (modifica-
tion with descent) and it will never be possible to recapitulate
all these pressures. So however successful models become within
this framework, it cannot be assumed that the evolved solutions
will be human-like. Again, the only way to find out will be to
test these models on relevant psychological datasets.

Whatever approach one adopts to modeling human object rec-
ognition and vision more broadly, the rich database of vision
experiments in psychology should play a central role in model
development and assessment (for related arguments in the
domain of object recognition and classical conditioning, see
Peters & Kriegeskorte, 2021, and Bhattasali, Tomov, &
Gershman, 2021, respectively; but see Lonnqvist, Bornet,
Doerig, & Herzog, 2021, for a different perspective). The
approach of comparing models on prediction-based experiments
makes sense in the context of building models that solve engineer-
ing solutions, but when trying to understand natural systems, the
standard methods of science should be adopted: Use models to
test hypotheses that are evaluated in experiments which manipu-
late independent variables. By this criterion, models developed in
psychology provide superior accounts of human vision than cur-
rent DNNs that have gathered so much attention.

7. Conclusions

DNNs outperform all other models on prediction-based experi-
ments carried out on behavioral and brain datasets of object rec-
ognition but fail to account for almost all psychological studies of
vision. This leads to some obvious questions: Do current
prediction-based experiments provide a flawed measure of
DNN–human similarity? What have we learned about human
visual recognition from DNNs? In what way are DNNs the
“best models of human visual object recognition”? In our view,
the most obvious explanation for the contrasting results obtained
with prediction-based and controlled studies is that prediction-
based studies provide a flawed measure of DNN–human corre-
spondences, and consequently, it is unclear what we can learn
about human vision by relying upon them, let alone claim
DNNs are the best models of biological object recognition.

We suggest that theorists should adopt a more standard
research agenda, namely, assess how well models account for a
range of data taken from controlled experiments that manipulate
independent variables designed to test specific hypotheses. In this
context, models are used to explain key empirical findings, and
confidence in models grows to the extent that they survive strin-
gent tests designed to falsify them. We have focused on DNN
models of object recognition as this is the domain in which the
strongest claims have been made but the same considerations
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apply to all domains of adaptive behavior. In our view, the current
prediction-based studies carried out on behavioral and brain data-
sets are very likely leading us up blind alleys and distracting us
from more promising approaches to studying human vision and
intelligence more broadly.
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Notes

1. The Brain-Score website currently lists 18 behavioral benchmarks, but the
data were taken from just the Rajalingham et al. and Geirhos et al. papers,
with 17 image manipulations from the later study all described as separate
benchmarks. However, it should be noted that the two papers each contributed
equally to the overall behavioral benchmark score, with the mean results over
the 17 conditions weighted equally with the Rajalingham et al. findings.
2. Interesting, some classical models of V1 processing do substantially better
in accounting for the V1 responses compared to DNNs when assessed on the
Brain-Score dataset itself. See http://www.brain-score.org/competition/
#workshop.
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Abstract

Everyone agrees that testing hypotheses is important, but Bowers
et al. provide scant details about where hypotheses about percep-
tion and brain function should come from. We suggest that the
answer lies in considering how information about the outside
world could be acquired – that is, learned – over the course of
evolution and development. Deep neural networks (DNNs) pro-
vide one tool to address this question.

Bowers et al. argue that we need to go beyond hypothesis-blind
benchmarking in assessing models of vision. On these points
we agree: Benchmarking massively complex models on small
and arbitrary brain and behavioural datasets is unlikely to yield
satisfying outcomes. The space of models and stimuli is too
vast, many models score similarly (e.g., Storrs et al., 2021a),
even bad models can score highly in constrained settings, and
the approach gives little insight into what model get right or
wrong about biological vision. Bowers et al. advocate for the
importance of hypothesis-driven research, which is something
with which we also agree. However, this is also fraught with chal-
lenges for which the authors offer little in the way of solutions.
Where do principled hypotheses come from? What theoretical
considerations should constrain the hypotheses we consider?
We suggest that the different answers that have been proposed
to such questions can provide insight into the role that deep neu-
ral networks (DNNs) might play in understanding perception and
the brain more broadly.
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One approach is to begin with what our visual systems seem to
do and work backwards to “reverse engineer” the brain. This
approach was advocated by Marr, and has been taken up by
Bayesian approaches that treat visual processes a set of “natural
tasks.” The idea is that natural selection shaped our brains to
approximate “ideal observers” of some set of environmental prop-
erties. But natural selection can only act retrospectively; it provides
no insight into the genesis of the “options” that it “chooses”
between. In the case of vision, it could select between brains
that were better at extracting some world properties than others,
but it provides no insight into how brains discovered that those
environmental properties exist. Something more is needed to
explain how the “natural tasks” the brain putatively solves were
discovered.

It is here we believe the idea of “data-driven” processes plays a
fundamental role. The only known mechanism for getting knowl-
edge about the world into our heads is through our senses. As our
brains were not given a list of scene variables they need to esti-
mate, they had to discover properties of the world based on the
“diet” of images they experienced over the course of evolution
and development. This simple (and seemingly tautological) asser-
tion has a profound theoretical ramification: It implies that any-
thing our brains extract about the world must be based on
information contained in, or derivable from, the input. Two routes
to defining “principled hypotheses” about visual function follow
from this: (1) we should identify what that information is, that
is, explore how what we experience about the world relates to
what exists in the input; and (2) we should identify how sensitivity
to that information was acquired (learned) over the course of evo-
lution and development, that is, explore the mechanisms that
underlie sensitivity to these quantities. These two ideas are not
independent. Understanding how information can be learned
from images can provide insight into what is learned, and under-
standing what information is used can constrain attempts to con-
struct a learning process that could become sensitive to it.

To ground this idea, consider an example from our recent
work. Psychophysical studies revealed that the subjective per-
ception of surface gloss depends not only on the physical spec-
ular reflectance of surfaces, but also on other, physically
independent scene properties such as shape and illumination
(Ho, Landy, & Maloney, 2008). Further experiments revealed
that that these perceptual errors were caused by differences in
the spatial structure and distribution of specular reflections
in the image, which relates our experience of a world property
(gloss) to properties of images (Marlow, Kim, & Anderson,
2012). We then showed that a system trained to recover
“ground truth” (i.e., trained to learn a mapping between images
and gloss) failed to predict human judgements. In contrast,
unsupervised DNNs, designed to summarise and predict
properties of the input, learned representations exhibiting the
same pattern of successes and errors in perceived gloss as
humans (Storrs, Anderson, & Fleming, 2021b). In essence, the
unsupervised DNN partially – but imperfectly – disentangled the
different scene variables (here, gloss, shape, and illumination) in
similar ways as our visual system. DNNs thus provided insight
into how such illusions could result from an (imperfect) learning
process.

How might we go about discovering the information in images
that our visual systems use, and what role might DNNs play in
hypothesis formation and/or model development? Supervised
DNNs of the variety Bowers et al. focus on are inherently teleolog-
ical; they start with a goal, and coerce the system towards that goal

through explicit training of the distinctions it wants the system to
make (Yamins & DiCarlo, 2016). Unsupervised or self-supervised
DNNs are techniques for finding similarities and differences
between general features based on statistical properties of the
input. One view of such networks is that they are generalised
“covariance detectors,” which are driven largely by how different
image properties do or do not covary. The idea that the visual
system derives information about scene properties from the
way that different types of image structure covary has provided
recent leverage in understanding how the brain extracts the
shape and material properties of surfaces (Anderson &
Marlow, 2023; Marlow & Anderson, 2021; Marlow, Mooney,
& Anderson, 2019).

What role might DNNs take in evaluating different compu-
tational models of vision? We agree that the psychology and
psychophysics literatures provide a wealth of excellent starting
points for testing candidate computational models of vision.
However, human ingenuity is not always well suited to design-
ing stimuli or experiments that can differentiate between multi-
ple computationally complex alternative models – and such
complexity will be unavoidable if we seek to capture human
vision in even broad strokes. Therefore, we also see value in
using automated selection of complex stimuli to maximally dif-
ferentiate complex models (e.g., Golan, Raju, & Kriegeskorte,
2020; Wang & Simoncelli, 2008). More broadly, deep learning
provides a means to instantiate different hypotheses about
how vision is acquired, and the impacts this has on the mature
visual system. There is a lot more to deep learning than
benchmarking.
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Abstract

We recognize today’s deep neural network (DNN) models of
language behaviors as engineering achievements. However,
what we know intuitively and scientifically about language
shows that what DNNs are and how they are trained on bare
texts, makes them poor models of mind and brain for language
organization, as it interacts with infant biology, maturation,
experience, unique principles, and natural law.

There is a long tradition of taking current engineering devices as
models of how nature itself works. Starting in the eighteenth cen-
tury, new techniques to control motion in practical uses were
adapted to create lifelike models of animals and humans, often
populating royal gardens with marvelous lifelike creatures. It
was tempting to suggest that the brain itself operates with its
own instantiation of such mechanistic principles. Early on came
the analogy with a clock, then the telephone network, then the
digital computer. Today’s “deep neural networks” (DNNs) are
sometimes taken as models, since they achieve fantastic perfor-
mance accuracy in human mental activities, discriminating
objects, or producing normal language.

Bowers et al. question the utility of using DNNs and related
methodology as models of vision with optical object recognition
and categorization as a rubric: They note a range of empirical fail-
ures, experimental flaws, and principled reasons why DNNs fail to
include other vision facts.

Vision in large part organizes the independent physical world,
but human language lies at the internal extreme – almost
completely created by the human mind/brain. Accordingly, inves-
tigations of language necessarily start with study of the internal
knowledge itself. What such investigations reveal about language
is inconsistent with DNNs that eschew linguistic theories.

(a) The poverty of the stimulus for children – limited experience,
and little explicit training result in sophisticated language
ability.

(b) The immediate role in early child language of hierarchical
categories and computational constraints (e.g., on anaphoric
relations).

(c) Structural elements of language syntax are discrete, the num-
ber of combinations is infinite.

(d) The distinction between grammar (aka competence) and
behavior (aka performance) (note: DNNs are intentionally
dependent on actual language behaviors).

(e) The role of maximum computational simplicity underlying
nature (Einstein’s Miracle Creed; Chomsky, in press;
McDonough, 2022).

Bowers et al. note the notorious flaw of DNNs: “…state-of-the-art
DNNs of natural language processing receive training that far
exceeds any human experience…. This highlights how these
DNNs are missing key human inductive biases that facilitate the
learning of natural languages but impair the learning of unstruc-
tured languages (something akin to a human language acquisition
device)” (target article, sect. 5, para. 2).

The term “inductive biases” reflects an assumption that the
“poverty of the stimulus” can be overcome by a list of built-in
“priors” which increase the speed of gradual inductive learning:
Yet decades of research show that that language emerges with-
out any such general induction process. Rather the evidence
indicates an available universal grammar, which defines limited
structural options for all languages. Children quickly latch onto
particular options of their native language from “signature
sentences” (e.g., Gleitman & Landau, 2013; Guasti, 2002;
Yang, 2011).

The study of vision and language do share some features. For
example, in both domains, the structure is often clarified by subtle
cues, illuminating its critical properties. In vision, an image of a
panda plus a little visual noise is reported as a gibbon for trained
DNNs (Goodfellow et al., 2015). Correspondingly in language
research, “minimal pairs” (sentences that vary slightly), can result
in strong and reliable differences in structure, interpretation, and
grammaticality. Language’s discrete infinity property ensures an
endless supply of such examples. Thus, large-scale DNN systems,
despite unlimited storage, and vast amounts of language data, do
not reliably match human performance: Imitation without the
human language faculty.

Humans recognize that “the chicken is ready to eat” exhibits
structural ambiguity. DNN systems that explicitly compute
parses, for example, Google Natural Language, do not recog-
nize the ambiguity, preferring the sentential subject to be sub-
ject of “eat.” Generative artificial intelligence (AI) systems do
not output parses, but we can still deduce underlying grammat-
ical relations by appending a question. In the case of ChatGPT,
we can ask for comment with “Is X an ambiguous sentence?”
This line of questioning reveals that it assumes “chicken” is the
object of “eat.” Swapping “children” for “chicken” reveals ambiguity
that it reports quite disturbing. Context, for example, the relative
proximity of discourses involving cannibals, the story of Hansel
and Gretel, or hungry aliens, plays a relative role in ChatGPT’s
training.

In fact, ChatGPT uses a several thousand token context,
potentially capturing discourse phenomena. Consider “The
white rabbit jumped from behind the bushes. The animal looked
around and then he ran away.” For both humans and ChatGPT,
he, the animal and white rabbit are preferred to be the same. But
if the sentences are reversed in order, only humans then treat
“rabbit” as a different entity from “animal,” revealing a
fundamental principle of anaphoric relations. If DNN is to be a
useful model of human behavior, we must know which parameter
out of the billions should be adjusted to correct such divergence:
Within the statistical enterprise, such errors cannot be diagnosed
nor fixed.
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The authors briefly raise issues involving the evolution of
vision as constraining it gradually over many species and
eons. Most obvious, and important for vision science, cross-
species analogies are multiple and detailed, but not available
for language. The authors correctly say that, in spite of
claimed success at learning languages, “DNNs will also hap-
pily learn [number agreement] in impossible languages
with…structures that are not found within any natural lan-
guages and which humans struggle to process” (target article,
sect. 5, para. 2).

This difference between real syntactic rules and impossible
syntactic rules goes much deeper. Like DNNs, humans can
master both kinds of rules. Yet in humans, this has underlying
neurological correlates that reflect what we know independently
about normal neurological processing of language (e.g., Musso
et al., 2003). Learning a real language previously unknown to
the subjects activates Broca’s area: But the same task with an
impossible syntactic rule (e.g., a rule that ignores hierarchical
structure in favor of serial position) activates only brain areas
normally activated during general problem-solving.

We have reviewed ways in which DNNs are empirically inad-
equate and discordant with theories of language in humans.
Adequate or not, we have no idea how individual trained DNNs
do what they do: For a DNN to be psychologically useful, we
need a theory of the “psychological” innards of the DNN,
which is either the same as the theory of human innards, or a
unique theory of how initially random associations are compiled
from actual behaviors into a model that can be tested on humans
(Bever, Fodor, & Garrett, 1968).

Why not focus on attempts to organize and constrain DNNs
and other types of models so they comport with what we already
know about language, language learning, language representa-
tions, and language behaviors? The answer for DNNs is also
their touted practical virtue, they learn from actual text, free of
hand tailored structural analysis. This engineering virtue pyrrhi-
cally underlies why they are doomed to be largely useless models
for psychological research on language.
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Abstract

Psychologically faithful deep neural networks (DNNs) could be
constructed by training with psychophysics data. Moreover, con-
ventional DNNs are mostly monocular vision based, whereas the
human brain relies mainly on binocular vision. DNNs developed
as smaller vision agent networks associated with fundamental
and less intelligent visual activities, can be combined to simulate
more intelligent visual activities done by the biological brain.

In keeping with what Turing proposed for the imitation game
(Turing, 1950), a good brain-computational model (Kriegeskorte
& Douglas, 2018) would not be the one that performs a particular
task with equal or greater accuracy than a human being, but rather
the one which would be indistinguishable from a human being
vis-à-vis input and output. Psychophysics, interestingly, is also
about input and output with the brain as black-box in between
(Read, 2015). Bowers et al. provide a comprehensive presentation
of the incongruence between deep neural networks (DNNs) and
the visual brain, but fails to note this relevant connection of psy-
chophysics to neuroscience for brain-computational modeling
(Read, 2015).

Psychophysics is “the analysis of perceptual processes by
studying the effect on a subject’s experience or behavior of sys-
tematically varying the properties of a stimulus along one or
more physical dimensions” (Bruce, Green, & Georgeson, 2003).
The psychophysics stimulus for vision can be an image or
video, and DNN, an information-processing system, may model
the subject’s response to the stimulus using supervised learning.
David Marr had proposed that an information processing system
should be understood at three levels: computational, algorithmic,
and implementation. The psychophysics task describes the com-
putational level problem, a DNN that performs the same task in
silica would represent the algorithmic level, and the electrophys-
iological or fMRI data obtained during the task will be a
by-product of the implementation of the algorithm in the biolog-
ical brain. If the DNN is considered for an equivalent mapping
between input and output as in a psychophysics experiment,
then the inputs can be represented by a tensor, whether it is an
image, video, sound signal, or a spatially invariant visual stimulus
like the flicker; the output would also have a numerical represen-
tation which, in case of psychophysics experiments, could be some
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classification, perceived brightness, color, shape, size, motion, inten-
sity at a particular location in the input signal, or a comparison
between two of those perceived sensations at different locations
of the stimulus, separated by space or time or both. The algorithm
used to transform the stimulus input to output will not be evident
from psychophysics experiments, but DNNs can construct that
algorithm without its exact knowledge for the programmer.

The dataset can be prepared by manipulating physical param-
eters associated with the stimulus and getting the subject response
for each of the stimuli. There can be some subjective differences
between the psychophysics data of human subjects for the same
stimuli (Read, 2015). So, it will be a better strategy to train and
test a DNN on the psychophysics data of the same subject.
Kubota, Hiyama, and Inami (2021) have used psychophysics
data obtained from brightness illusions to train DNNs. Kubota
et al. (2021) have shown that it is possible to make comparisons
between human perception on the one hand, and the output with
the said methodology, on the other. DNNs may also be tested on a
stimulus, completely different from the one it was trained on, if its
output layer is of similar representation to that of the new stim-
ulus. Recently, Ghosh and Chandran (2021) proposed such a
technique for flicker stimulus. The intermediate outputs of a
DNN can be compared with the brain electrophysiological signals
as done by Zipser and Andersen (1988), and more recently by
Chandran and Ghosh (2021, 2022) with EEG. We argue that
more testable models can be constructed by training on less com-
putationally intensive tasks than tasks like object classification
into thousands of classes. For instance, a convolutional neural
network (CNN) trained for low-level visual tasks gets deceived
by brightness and color illusions (Gomez-Villa, Martín,
Vazquez-Corral, Bertalmío, & Malo, 2020). DNNs have also
been put forth to solve tasks used in experimental psychology
like Raven’s progressive matrices (Jahrens & Martinetz, 2020).
New network models, different from the engineering goal-
oriented image classification DNNs, could be constructed for
the purpose as was previously done for finding head-centered
coordinates of external objects by monkey brain by Zipser and
Andersen (1988). It could be easier to make correlations between
outputs of intermediate layers of a neural network with fewer neu-
rons and layers with brain signals than complex networks.

Bowers et al. mentions that DNNs trained on ImageNet do not
encode three-dimensional (3D) features of objects or their depth
as opposed to human vision. The abovementioned DNNs are
trained with datasets prepared from cameras with monocular
vision. But the mammalian brain gets information from the two
eyes and it is known that human subjects with one eye are not
so efficient with depth perception (Westlake, 2001). Robots with
stereo cameras making use of DNNs are able to do tasks like cal-
culating position of detected fruit from stereo cameras (Onishi
et al., 2019). Stereo vision can enable autonomous driving vehicles
to do tasks like object detection, 3D information acquisition, and
depth perception (Fan, Wang, Junaid Bocus, & Pitas, 2023). The
mammalian brain had input from two eyes throughout the course
of its evolutionary history. So training DNNs using stereo camera
data might be needed to develop the equivalents of many circuits
in the brain.

To conclude, psychophysics with DNNs could be used to con-
struct many of the smaller agents that compose the human mind
as proposed by Minsky (1988). Vision agents that compose the
mind need to be likewise constructed via DNNs, which may be
associated with fundamental activities like brightness perception,
motion detection, depth perception, or even less intelligent

activities than that, in the parallel visual pathways. Neural net-
works for more complex tasks can be built with a combination
of smaller DNNs using shared layers, or by using output from
some layers of a DNN as input for layers of another DNN.
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Abstract

Bowers et al. counter deep neural networks (DNNs) as good
models of human visual perception. From our color perspec-
tive we feel their view is based on three misconceptions: A mis-
representation of the state-of-the-art of color perception; the
type of model required to move the field forward; and the attri-
bution of shortcomings to DNN research that are already being
resolved.

One of the main arguments that Bowers et al. put forth is that
deep neural networks (DNNs) classify objects in a fundamentally
different manner from humans. However, what Bowers et al. pro-
mote as the state-of-the-art in terms of color processing, namely a
strict segregation of visual streams for color and shape
(Livingstone & Hubel, 1987), is outdated and has repeatedly
been rejected (see Garg, Li, Rashid, & Callaway, 2019;
Gegenfurtner & Kiper, 2003; Shapley & Hawken, 2011). The
fact that line drawings can be recognized quickly does not
imply that object processing in humans does not rely on color.
On the contrary, boundaries defined by color appear essential
for image segmentation in humans (Hansen & Gegenfurtner,
2009, 2017; Shapley & Hawken, 2011). Moreover, the view on
how color is represented in the brain has evolved from one of hav-
ing a single-color center, to one where color-biased regions are
found throughout the ventral stream (e.g., Conway, 2018;
Gegenfurtner, 2003). While classical algebraic models of color
vision have been highly successful in explaining the processing
in the cones and color-opponent stages in the eye, higher level
cortical processing is still not well understood (for a recent review,
see Siuda-Krzywicka & Bartolomeo, 2020). All the evidence
points toward an integral role for color in extracting objects,
and this perfectly matches the emphasis that DNNs place on
objects rather than isolated features.

Bowers et al. emphasize the lack of experimental rigor in test-
ing DNNs compared to testing humans. While we largely agree,
it is also important to consider the limitations of a myopic drive
to constrain experiments to single-feature manipulations.
Reductionist experimental methodology in human research typ-
ically diverges greatly from our natural experiences. It biases
research toward investigating cognitive functions not necessarily
at the core of how our system operates in daily life (e.g.,
Shamay-Tsoory & Mendelsohn, 2019). While Biederman’s
(1987) geons may be sufficient for recognizing isolated objects
in stereotypical configurations, in daily scenes objects appear
in countless varying states (e.g., a cat curled up in a ball on
the couch) and other features will gain importance. To avoid a
reductionist bias, neuroscientific models need to be grounded
in behavior natural to the organism (Krakauer, Ghazanfar,
Gomez-Marin, MacIver, & Poeppel, 2017). DNNs may seem
misplaced within a classical approach of model-based hypothe-
sis testing, where strongly reductive process models are defined
explicitly to test a single hypothesis. However, DNNs are highly
suitable for studying how behavior shapes underlying mecha-
nisms. By observing emerging properties in the context of learn-
ing specific tasks and manipulating input we can develop
improved hypotheses on why colors are represented the way
that they are in the human visual system. Subsequently, as
DNNs allow for comparisons at many levels, from single trials
in psychophysics or electrophysiology experiments, up to
derived mental representations in a human observer, they

make it possible to study how these mechanisms may be
implemented.

Naturally, without considerable overlap with the human
visual system we would not consider DNNs adequate models
of human vision. However, Bowers et al. focus strongly on dis-
crepancies between humans and DNNs, but neglect important
overlap. For color, properties of artificial neurons show
great overlap with those in primate visual cortex: Many neurons
exhibit double-opponent receptive fields (Flachot &
Gegenfurtner, 2018, 2021; Rafegas, Vanrell, Alexandre, &
Arias, 2020; Rafegas & Vanrell, 2018), and a moderate func-
tional segregation between color and achromatic information
was found at the early stages, corresponding to retino-geniculate
processing (Flachot & Gegenfurtner, 2018). On a higher level,
DNNs were also shown to outperform classical models in iden-
tifying regions of the objects that are highly predictive of human
behavioral patterns when discriminating color of naturalistic
objects (Ponting, Morimoto, & Smithson, 2023). Moreover,
qualitative similarities have been uncovered between DNNs
and human participants in color constancy experiments where
individual cues known to affect human color constancy were
manipulated (Flachot et al., 2022). Finally, in our efforts to
uncover why humans adopt a categorical representation of
color, we found that DNNs trained specifically for object recog-
nition incorporate a categorical representation of color that is
highly similar to that of humans (de Vries, Akbarinia, Flachot,
& Gegenfurtner, 2022).

In that study, we strongly focused on translating psychophys-
ical methods to DNNs. We created a match-to-sample task
inspired by work on color categorization in pigeons (Wright &
Cumming, 1971) using controlled-stimuli and, in secondary
experiments, validated their use in the DNN. We also translated
the concept of categorical color perception (where colors from
different categories are distinguished faster than those from
the same category) to the DNN. Our study on color constancy,
mentioned above, also included the typical manipulations
found in psychophysical studies on the issue. Finally, the studies
on neural color tuning translated methods from single-cell
recordings in nonhuman primates to DNNs. Together, this
introduces important tools to move beyond purely correlational
human–DNN comparisons and to investigate where the DNN is
similar to the human visual system and where it deviates.
Carefully designed experiments allow for collecting response
patterns from DNNs through which richer human–DNN com-
parisons are possible. Notably, our findings are not purely cor-
relational in nature. For example, to establish whether object
recognition was important to finding a categorical representa-
tion of color, we contrasted an object-trained DNN with the
one trained to distinguish artificial from man-made scenes.
Importantly, human-like color categories were only found for
the object task, indicating that object learning may be crucial
in shaping human color categories.

Color and object processing are intricately connected (e.g.,
Conway, 2018; Witzel & Gegenfurtner, 2018) and understanding
color perception will require a model that takes objects into
account. DNNs enable us to investigate under what circumstances
color phenomena arise and to inspect how they are implemented.
Naturally, shortcomings, such as a reliance on correlation-based
comparisons and strong divergences from human object process-
ing should be addressed. However, we believe these shortcomings
will prove predominantly temporary in nature, as they are already
being taken into account in several recent studies. As such, where
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Bowers et al. take issue with using object-trained DNNs, we see
opportunity.
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Abstract

In the target article, Bowers et al. dispute deep artificial neural
network (ANN) models as the currently leading models of
human vision without producing alternatives. They eschew the
use of public benchmarking platforms to compare vision models
with the brain and behavior, and they advocate for a fragmented,
phenomenon-specific modeling approach. These are uncon-
structive to scientific progress. We outline how the Brain-Score
community is moving forward to add new model-to-human
comparisons to its community-transparent suite of benchmarks.

Common ground

As vision scientists, we believe that an understanding of human
visual processing should ultimately explain all visually driven
behavior. Because vision operates – by definition – on visual
input, a science of human vision ultimately requires “image-
computable” models and theories that produce those models.
Bowers et al. endorse this view as every psychology experiment
they suggest focuses on the effects of manipulations of combina-
tions of image pixels.

On empirical tests of vision models

As empirical vision scientists, we also believe that advances in
understanding visual processing will arise from rigorous,
community-transparent tests of model predictions against empir-
ical observations from the brain (e.g., patterns of neural firing)
and the mind (e.g., patterns of behavior). As such, we and others
have contributed to the creation of an open-source platform
where any member of the vision community can find the leading
models, test new models, see the most model-disruptive
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experimental benchmarks, and add new benchmarks (www.brain-
score.org; Schrimpf et al., 2018, 2020).

The most constructive contribution of Bowers et al. is the iden-
tification of a set of human behavioral vision findings that the
authors believe will not be well-predicted by currently leading
deep artificial neural network (ANN) models (target article,
sect. 4.1). To evaluate this claim, the Brain-Score community is
turning these empirical findings into accessible benchmarks that
current (and future) models of human visual processing can be
evaluated on. The results of this evaluation, especially if these
benchmarks indeed present a challenge for current ANN models,
should and would motivate next steps in human vision modeling.
We report the following status at the time of this writing:

• We have implemented a benchmark based on Baker and Elder
(2022). We find that some ANN vision models are within the
noise ceiling of the human data (based on resampling of the
human data).

• Two of the papers (Puebla & Bowers, 2022; Zhang, Bengio,
Hardt, Recht, & Vinyals, 2021) evaluate the performance of
some ANN models without a human reference. Thus these
studies currently provide no empirical support for the target
article’s claim that current ANN models fail to capture
human behavior. But human data could be collected to turn
these into benchmarks.

• Three of the papers (Bowers & Jones, 2007; Mack, Gauthier,
Sadr, & Palmeri, 2008; Saarela, Sayim, Westheimer, & Herzog,
2009) produced human behavioral data that ANN models do
not yet have a standardized way to make predictions about, for
example, reaction times. This is surmountable (e.g., Spoerer,
Kietzmann, Mehrer, Charest, & Kriegeskorte, 2020) and we
view this as a goal for future models and for Brain-Score.

On current vision models

We are not dogmatically committed to any current deep ANN
model of human vision, none of which are perfect models of
human vision, as the Brain-Score effort helped illuminate.
However, we disagree with Bowers et al.’s claim that deep
ANNs are not the currently leading models of human ventral
visual processing. Bowers et al. critique ANN models without
offering a better alternative: They imply that better models exist
or should exist, but do not elaborate on what those models are.
In the absence of an alternative model, it is justifiable to refer
to ANNs as the currently best models. In fact, as can be seen
on Brain-Score, in addition to the ability of some ANN models
to moderately well predict neural responses at multiple visual pro-
cessing stages, those same ANN models do, to some extent, pre-
dict even quite challenging behavioral data patterns (Geirhos
et al., 2021; Rajalingham et al., 2018).

Bowers et al. eschew community-transparent suites of bench-
marks yet they imply an alternative notion of vision model eval-
uation, which is somehow not a suite of benchmarks. But again,
they do not produce a feasible alternative. Of course, the model
rankings produced by benchmarks also depend on the choice of
datasets and metric used for evaluation. We will continue to
help the Brain-Score community expand the range of datasets
and we are not dogmatically committed to any particular choice
of metric. Different subcommunities may prefer to initially
focus on different metrics (e.g., to know the currently best behav-
ioral model regardless of underlying brain alignment, or vice-
versa), and Brain-Score should support those different benchmark

weightings. But we see no alternative to support advances in mod-
els of vision other than an open, transparent, and community-
driven way of model comparison.

On building new vision models

Bowers et al. appear to favor a classic approach in which a separate
model is built for each psychological phenomenon, using special-
ized stimuli that are hand-crafted to enable certain visual features
to be well-defined – for example, illusory contours or shape primi-
tives. The appeal of this approach is that it reduces the complexity of
a high-dimensional pixel input space into small intuitive sets of fea-
tures that enable the formulation and testing of conceptual hypoth-
eses about vision – for example, the mechanisms of a particular class
of visual illusions. However, because this approach requires dramat-
ically restricting the stimuli under consideration, such hypotheses
often cover a near-zero fraction of image space. In our opinion,
the idea that a universal scientific model of human vision will result
from sets of fragmented explanations that only engage a tiny frac-
tion of image space is illusory (Newell, 1973).

In contrast, the approach of starting with image-computable
models that we favor enables tangible progress toward a unified
model of human vision. Transparent tracking of model shortcom-
ings lights the path to this goal. We acknowledge that the image-
computability requirement may make formulation of traditional
conceptual tests of a model more challenging. But it, by no
means, makes such tests impossible. Any pattern of behavioral
data, including those discussed in the target article, should be
translatable into a behavioral benchmark on Brain-Score.

Moving forward

Ultimately, we think that the advantages that image-computable
models have in enabling evaluation of predictions about diverse
visual stimuli and phenomena heavily outweighs their disadvan-
tages. And maintaining and expanding a common evaluation
scheme for image-computable models of vision is, in our view,
a prerequisite for channeling the valuable contributions of vision
science – across neuroscience, cognitive science, psychology, and
computer vision – toward convergence on the best scientific mod-
els of human vision. Let’s move forward!
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Abstract

Although discriminative deep neural networks are currently
dominant in cognitive modeling, we suggest that capacity-lim-
ited, generative models are a promising avenue for future
work. Generative models tend to learn both local and global fea-
tures of stimuli and, when properly constrained, can learn com-
ponential representations and response biases found in people’s
behaviors.

The target article offers cogent criticisms of deep neural networks
(DNNs) as models of human cognition. Although discriminative
DNNs are currently dominant in cognitive modeling, other
approaches are needed if we are to achieve a satisfactory under-
standing of human cognition. We suggest that generative models
are a promising avenue for future work, particularly capacity-
limited, generative models designed around componential repre-
sentations (e.g., part-based representations of visual objects and
scenes).

A generative model is a model that learns a joint distribution of
visible (i.e., observed) and hidden (latent) variables. Importantly,
many generative models allow us to sample from the distribution
learned by the model, producing “synthetic” examples of the con-
cept modeled by the distribution. Using a generative model to

make inferences about external stimuli is a matter of identifying
the properties of the generative model most likely to have pro-
duced these stimuli. By their very nature, generative models neatly
sidestep many of the issues with discriminative models, as
described in the target article.

Most obviously yet perhaps most importantly, they are typi-
cally judged not based on predictive performance, but on their
ability to synthesize examples of concepts, which requires a
more profound understanding of those concepts than does mere
discrimination, potentially leading to task-general representations
capable of explaining far more of human perceptual and cognitive
reasoning. For example, unlike discriminative models trained to
categorize images, which tend to base their decisions on texture
patches and local shape instead of global shape as humans do,
a successful generative model must include an understanding of
global object shape, as otherwise its samples would not be realis-
tic. Inference in such a generative model would therefore be sen-
sitive to object shape as a matter of course, as well as a number of
other properties that might be ignored by a discriminatively
trained model.

Another important feature of human cognition not captured
by large DNNs is capacity limits. People cannot remember all
aspects of a visual environment, and so human vision needs to
be selective and efficient. By contrast, DNNs often contain billions
of adaptable parameters, providing them with enormous learning,
representational, and processing capacities. These seemingly
unlimited capacities are in stark contrast to the dramatically lim-
ited capacities of biological vision, as noted in the target article.
This need for efficiency underlies people’s attentional and mem-
ory biases. People are biased toward “filling-in” missing features
(i.e., features not attended or remembered) with values that are
highly frequent in the environment. In addition, people are biased
toward attending to and remembering those features which are
most relevant for their current goal, thereby maximizing task
performance.

Bates, Lerch, Sims, and Jacobs (2019) experimentally evaluated
these biases using an optimal model of capacity-limited visual
working memory (VWM) based on “rate-distortion theory”
(RDT; see Sims, Jacobs, & Knill, 2012). Both biases were predicted
by the RDT model: An optimal VWM should be biased toward
allocating its limited memory resources toward high-probability
feature values and toward task-relevant features. Bates and
Jacobs (2021) studied people’s responses in the domain of visual
search and attention. The RDT model predicted important
aspects of these responses, including “set-size” effects indicative
of limited capacity, aspects not accounted for by a model based
on Bayesian decision theory.

In accord with these ideas, a popular form of generative
model, a “variational autoencoder” (VAE) uses a loss function
during training that penalizes a large growth in capacity. A
VAE maps an input through one or more hidden layers, with
a penalized capacity at one of the layers, to an output layer
that attempts to reconstruct the input. Reconstructions are typ-
ically imperfect due to the “lossy” representations at the “bottle-
neck” hidden layer with restricted capacity. Machine learning
researchers have shown important mathematical relationships
between VAEs and RDT (Alemi et al., 2017, 2018; Ballé,
Laparra, & Simoncelli, 2016; Burgess et al., 2018). Bates and
Jacobs (2020) used VAEs to model biases and set-size effects
in human visual perception and memory. We believe this is
an encouraging early step toward developing capacity-limited,
generative models of human vision.
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The desire for efficient representations also leads to compo-
nential or part-based approaches, and generative models naturally
lend themselves to understanding concepts based on parts and
relationships between them, as humans do (in contrast to
DNNs, as the target article points out, citing German and
Jacobs, 2020, and Erdogan and Jacobs, 2017). The same basic
parts can be used to create a wide variety of distinct objects,
just by changing the relationships between them (the basis of
many perceptual and cognitive models such as Biederman,
1987). Learning new object concepts thereby becomes more effi-
cient, as once a part has been learned, it can be used in the rep-
resentation and construction of any object concept using it,
including new ones. This idea can be further extended by suppos-
ing that parts are made out of subparts, and so on, producing
hierarchical, componential generative models (e.g., Lake,
Salakhutdinov, & Tenenbaum, 2015; Nash & Williams, 2017).

To be sure, a capacity-limited, generative approach is not going
to “solve” cognitive modeling overnight. It still faces major obsta-
cles such as computationally expensive inference and a lack of
objective criteria with which to judge the quality of its synthesized
instances. However, we are optimistic that these issues can be
resolved, and we hope the target article inspires researchers to
look beyond the established discriminative DNN paradigm.
Perhaps if capacity-limited, generative models receive as much
research attention and development as discriminative models
have, we can look forward to significant advances in both compu-
tational cognitive modeling and machine learning.
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Abstract

An ideal vision model accounts for behavior and neurophysiol-
ogy in both naturalistic conditions and designed lab experi-
ments. Unlike psychological theories, artificial neural networks
(ANNs) actually perform visual tasks and generate testable pre-
dictions for arbitrary inputs. These advantages enable ANNs to
engage the entire spectrum of the evidence. Failures of particular
models drive progress in a vibrant ANN research program of
human vision.

Bowers et al. discuss the limited connection between the psycho-
logical literature on human vision and recent work combining
artificial neural networks (ANNs) and benchmark-based statisti-
cal evaluation. They are correct that the psychological literature
has described behavioral signatures of human vision that ANNs
should but do not currently explain. A model of human vision
should ideally explain all available neural and behavioral data,
including the unprecedentedly rich data from naturalistic bench-
marks as well as data from experiments designed to address spe-
cific psychological hypotheses. None of the current models
(ANNs, handcrafted computational models, and abstractly
described psychological theories) meet this challenge.

Importantly, however, the failure of current ANNs to explain
all available data does not amount to a refutation of neural net-
work models in general. Falsifying the entire, highly expressive
class of ANN models is impossible. ANNs are universal approx-
imators of dynamical systems (Funahashi & Nakamura, 1993;
Schäfer & Zimmermann, 2007) and hence can implement any
potential computational mechanism. Future ANNs may contain
different computational mechanisms that have not yet been
explored. ANNs therefore are best understood not as a monolithic
falsifiable theory but as a computational language in which partic-
ular falsifiable hypotheses can be expressed. Bowers et al.’s long
list of cited studies presenting shortcomings of particular models
neither demonstrates the failure of the ANN modeling framework
in general nor a lack of openness of the field to falsifications of
ANN models. Instead, their list of citations rather impressively
illustrates the opposite: That the emerging ANN research program
(referred to as “neuroconnectionism” in Doerig et al., 2022) is
progressive in the sense of Lakatos: It generates a rich variety of
falsifiable hypotheses (expressed in the language of ANNs) and
advances through model comparison (Doerig et al., 2022). Each
shortcoming drives improvement. For example, the discovery of
texture bias in ANNs (Geirhos et al., 2019) has led to a variety
of alternative training methods that make ANNs rely more
strongly on larger-scale structure in images (e.g., Geirhos et al.,
2019; Hermann, Chen, & Kornblith, 2020; Nuriel, Benaim, &
Wolf, 2021). Similarly, the discovery of adversarial susceptibility of
ANNs (Szegedy et al., 2013) has motivated much research on per-
ceptual robustness (e.g., Cohen, Rosenfeld, & Kolter, 2019; Guo
et al., 2022; Madry, Makelov, Schmidt, Tsipras, & Vladu, 2019).

Bowers et al. create a false dichotomy between benchmark
studies (e.g., Cichy, Roig, & Oliva, 2019; Kriegeskorte et al.,
2008; Nonaka, Majima, Aoki, & Kamitani, 2021; Schrimpf et al.,
2018) and controlled psychological experiments. Both approaches
test model-based predictions of empirical data. Traditional psy-
chological experiments are designed to test verbally defined theo-
ries, minimizing confounders of the independent variables of
theoretical interest. In contrast, the numerous experimental condi-
tions included in natural image behavioral and neural benchmarks

are high-dimensional, complex, and ecologically relevant.
Controlled experiments pose specific questions. They promise to
give us theoretically important bits of information but are biased
by theoretical assumptions and risk missing the computational
challenge of task performance under realistic conditions (Newell,
1973; Olshausen & Field, 2005). Observational studies and exper-
iments with large numbers of natural images pose more general
questions. They promise evaluation of many models with compre-
hensive data under more naturalistic conditions, but risk inconclu-
sive results because they are not designed to adjudicate among
alternative computational mechanisms (Rust & Movshon, 2005).
Between these extremes lies a rich space of neural and behavioral
empirical tests for models of vision. The community should seek
models that can account for data across this spectrum, not just
one end of it.

Despite their widely discussed shortcomings (e.g., Lindsay,
2021; Peters & Kriegeskorte, 2021; Serre, 2019), ANNs are some-
times referred to as the “current best” models of human vision.
This characterization is justified on both a priori and empirical
grounds. A priori, ANNs are superior to verbally defined cogni-
tive theories in that they are image-computable, that is, they are
fully computationally specified and take images as input. These
properties enable ANNs to make quantitative predictions about
a broad range of empirical phenomena, rendering ANNs more
amenable to falsification. Being fully computationally specified
enables them to make quantitative predictions of neural and
behavioral responses (an advantage shared with other cognitive
computational models). Taking images as inputs enables ANNs
to make predictions about neural and behavioral responses to
arbitrary visual stimuli. A model that explains only a particular
psychological phenomenon is a priori inferior, ceteris paribus,
to a model that predicts data across a wide range of conditions
and dependent measures. The discrepancies between human
vision and current ANNs are “bugs” of particular models, but
the fact that we can discover these bugs is a feature of image-
computable ANNs, fueling empirical progress. Since ANNs are
image-computable, they enable severe tests of their predictions
(superstimuli, adversarial examples, metamers; Bashivan, Kar, &
DiCarlo, 2019; Dujmović, Malhotra, & Bowers, 2020; Feather,
Durango, Gonzalez, & McDermott, 2019; Walker et al., 2019)
and powerful model comparisons (controversial stimuli; Golan,
Raju, & Kriegeskorte, 2020).

The empirical reason why ANNs can be called the “current
best” models of human vision is that they offer unprecedented
mechanistic explanations of the human capacity to make sense
of complex, naturalistic inputs. Most basically, ANNs are cur-
rently the only models that can recognize objects, parse scenes,
or identify faces at performance levels similar to human perfor-
mance. Furthermore, they offer image-specific predictions of
errors (e.g., Geirhos et al., 2021; Rajalingham et al., 2018) and
reaction times (e.g., Spoerer, McClure, & Kriegeskorte, 2017).
Their predictions are far from perfect but better than those of
alternative models. Finally, the intermediate representations of
ANNs currently best match the neural representations that under-
lie human visual capacities (e.g., Dwivedi, Bonner, Cichy, & Roig,
2021; Güçlü & van Gerven, 2015).

In sum, ANNs provide a language that enables us to express
and test falsifiable computational models that have extraordinary
power and can generalize to a broad range of empirical phenom-
ena. Lakatos (1978) noted that all theories “are born refuted and
die refuted” and stressed the importance of comparing competing
theories in the light of the evidence. Our studies, then, should
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compare many models and report both their failures and their rel-
ative successes. It is through creation and comparison of many
models that our field will progress.
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Abstract

Deep neural networks (DNNs) are not just inadequate models of
the visual system but are so different in their structure and func-
tionality that they are not even on the same playing field. DNN
units have almost nothing in common with neurons, and, unlike
visual neurons, they are often fully connected. At best, DNNs can
label inputs, while our object perception is both holistic and detail
preserving. A feat that no computational system can achieve.

The authors make a valuable contribution in pointing out that deep
neural networks (DNNs) are not good models of the visual system
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since they rely on predictions and fail to account for results from
many psychophysical experiments. However, the authors’ implicit
acceptance that DNN basic structure and operational principles
are a fair simulation of the visual system resulted in ignoring that
DNNs are not just inadequate to represent biological vision but
that they are not even on the same playing field.

The discovery of feature-selective cells in primates V1 and sub-
sequent findings of face-selective cells in the monkey inferotem-
poral (IT) cortex have led to the dominant physiology-based
view that object representation and recognition is encoded by
sparse populations of expert cell ensembles (Freiwald & Tsao,
2010). This theory posits that, first, the image is analyzed into
its basic elements, such as line segments, by V1 feature-selective
cells. Then, after hierarchical convergence and integration of sim-
ple elements, expert cell ensembles, by their collective responses,
represent objects uniquely.

Those physiological findings and models have inspired various
computational models (Marr, 2010), leading to current DNNs.
Such models, though incorporating some neuronal-like characteris-
tics, were not intended to emulate brain mechanisms; much of the
perceived similarity between biological and artificial networks has
more to do with terminology (e.g., cells, layers, learning, features)
than with exact replication. The fundamental differences between
biological and artificial object recognition mechanisms are

manifested in functional anatomy, and, most importantly, in the
inherent impossibility of DNNs, or any other computational mecha-
nism, including expert ensembles, to replicate our perceptual abilities.

Functional anatomy

Profound differences between biological networks and DNNs can be
found at all organizational levels. Single neurons with their complex
electro-chemical interactions are unlike the schematic DNN “neu-
rons.” As noted by Ullman (2019), almost everything known about
biological neurons was left out of their DNN counterparts.
Connectivity between single elements presents another striking diver-
gence between DNNs and the visual cortex. Typically, DNNs contain
many layers with units that are connected to all other units, although
there is no such connectivity in the visual cortex. Lateral connections
within a cortical area are sparse; in V1 the intrinsic connections are
only between same orientation columns (Stettler, Aniruddha,
Bennett, & Gilbert, 2002). Feed-forward connections in the ventral
pathway, V1→V2→V4→ IT, are not one-to-one but many-to-one
leading to increase in receptive field size fromminutes of arc in V1 to
many degrees in the IT cortex (Rolls, 2012). Most feedback from
higher to lower areas is less dense than the feed-forward one and
does not target single cells (Rolls, 2012). Also, DNNs are usually
composed of more than 20 layers including highly specialized ones

Figure 1 (Gur). Triangle is recognized as such despite
potentially appearing in any one of an astronomical
number of variations.
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whereas there are only four areas in the visual hierarchy which are
remarkably similar in their basic anatomy.While suchprofound struc-
tural differences are in themselves sufficient to deny that DNNs “are
the best models of biological vision,” even a larger gap between
DNNs and biological reality stems from ultimate differences in func-
tionality. Note that since both expert ensembles and DNN models
share essential characteristics, such as hierarchical feature extraction
and integration, and since the latter differ structurally from the visual
cortex, showing that the biologically basedmodel is not a goodmodel
of the visual cortex, rules out DNNs as well.

Invariance

We recognize an object even though it can vary greatly in appear-
ance. In Figure 1 a triangle with many properties (e.g., size) and
many variations within property is displayed. Combining proper-
ties and variations leads to an astronomical number of variations,
yet all objects are recognized as triangles, are differentiated from
each other, and from any of the similarly astronomical possible
appearances of, say, a square. It is impossible for a small number
of “expert” cells to generate a pattern that is unique to every single
triangle yet differs from all squares-generated patterns. The same
arguments apply, obviously, to all other object categories. Are we
to assume then that there are ensembles dedicated to each of the
many thousands object categories out there?

Space and time characteristics of object perception

A collection (∼0.6° in total width) of small dots displayed for ∼50
ms is easily perceived as a turtle (Fig. 2; Gur, 2021). This result is
quite informative; the display size means that the dots must be
represented by V1 cells which are the only ones with small
enough receptive fields. The short exposure means that correctly
judging the position and relationship between dots, which is
essential for a holistic object perception, cannot result from
V1→V2→V4→ IT hierarchical convergence since there is sim-
ply not enough time (Schmolesky et al., 1998). This example is con-
sistent with many studies showing an accurate perception of flashed
objects (cf. Crouzet, Kirchner, & Thorpe, 2010; Greene & Visani,
2015; Gur, 2018, 2021; Keysers, Xiao, Foldiak, & Perrett, 2001).
Thus, unlike the predictions of the expert ensemble theory, our per-
ception is almost instantaneous, parallel, and detail preserving.

Detailed and holistic

These two characteristics are contradictory to any integrative/
computational system where the whole is derived by integrating
over its parts. However, this is how we see the world. It is the
visual system ability to perceive space simultaneously and in par-
allel that leads to the holistic yet detailed capacity. The world is
perceived almost in a flash-like manner; all the elements’ position

and features (size, shape, orientation, etc.) are available for an
immediate decision – a building or a face? Such a discrimination
between objects with such a retention of details would not have
been possible if elements were integrated and serially sent across
many synapses to areas downstream from V1.

Finally, any computational system, including those discussed
here, can, at best, map output to input. To recognize an object,
the system generates a label, “object #2319764,” which is devoid
of all the object’s constituent elements. This result is quite different
from our perceptual experience where an object is perceived together
with its minute details. This discrepancy between perceptual reality
and even the best possible performance of a computational system
clearlymeansthat suchasystemcannotbeamodelof thevisual system.
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Figure 2 (Gur). Animal is recognized even when its contour is represented by dots,
and is displayed for ∼50ms.
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Abstract

Bowers et al. express skepticism about deep neural networks
(DNNs) as models of human vision due to DNNs’ failures to
account for results from psychological research. We argue that
to fairly assess DNNs, we must first train them on more
human-like tasks which we hypothesize will induce more
human-like behaviors and representations.

We agree with Bowers et al. that accounting for results from
behavioral experiments should serve as a North Star as we develop
models of human vision. But what is a promising path to finding
models that perform well on experimental benchmarks? In this
commentary, we focus on the role of the task(s) on which models
are trained. Zhang, Bengio, Hardt, Recht, and Vinyals (2017) have
shown that modern deep neural networks (DNNs) are more than
expressive enough to overfit to any classification task on which
they are trained. In particular, the authors show that DNNs can
learn to classify ImageNet images (Deng et al., 2009) with arbi-
trarily shuffled labels, demonstrating maximal flexibility with
respect to this training set. To introduce a metaphor, our models
are like sponges, capable of absorbing whatever information we
teach them through the training tasks we present. Thus, when
we ask about a model’s behavior, we should ask, first, what it
was trained to do. Although Bowers et al. take failures of
ImageNet-trained models to behave in human-like ways as sup-
port for abandoning DNN architectures, we argue that we should
instead consider alternative training tasks for DNNs.

Recent work has shown that pushing DNNs to perform well
on ImageNet may not, in general, push them to be more human-
like. Very high ImageNet performance becomes inversely related
to primate neural predictivity (Schrimpf et al., 2018; Schrimpf,
2022), and there is a tradeoff between perceptual scores from
human judgments (Kumar, Houlsby, Kalchbrenner, & Cubuk,
2022) and ImageNet performance, and between shape bias and
ImageNet performance, when shape bias is modulated by data
augmentation (Hermann, Chen, & Kornblith, 2020).

Certainly, humans can categorize the objects they see, but cat-
egorization is only a small part of how we process the visual
world. Mostly, we use our visual systems to interact with the
objects around us, in a closed loop comprising perception, infer-
ence, decision making, and action. There are several reasons to
believe that training models on similarly embodied and active
learning tasks may bring their behavior and representations closer
to humans’. First, physically interacting with objects requires
detailed perception of their global spatial properties (shape, posi-
tion, motor affordances, etc.). Arguably, several of the most
famous divergences between models and people stem from mod-
els’ failures to weigh exactly this kind of information. For example,
unlike people (Kucker et al., 2019; Landau, Smith, & Jones, 1988),
many standard DNNs seem to rely on texture information more
than shape (Baker, Lu, Erlikhman, & Kellman, 2018; Geirhos
et al., 2019; Hermann et al., 2020). While, empirically, texture
seems to be sufficient for good performance on ImageNet, it is
unlikely to suffice for embodied navigation or manipulation
tasks. In determining how to position oneself to sit in a chair,
the shape and position of the chair are far more important than
its color or upholstery texture. Similarly, adversarial examples
(Nguyen, Yosinski, & Clune, 2015; Szegedy et al., 2013), another
often-cited separator of humans and DNNs, arguably arise from
models’ over-reliance on local pixel patterns at the expense of

the global configural information required for embodied interac-
tion. Overall, we hypothesize that existing DNN architectures, if
trained to navigate the world and interact with objects in the
way that humans do, would be more likely to display human-like
visual behavior and representations than they do under current
training methods.

Another implication of the Zhang et al. (2017) work is that
modern networks are sufficiently large that training them on a
1,000-way classification task on a million images is insufficient to
exhaust their capacity, leaving important degrees of freedom gov-
erning their generalization performance underconstrained, which
allows for deviant phenomena such as adversarial examples of
the kind and severity currently observed. As another example of
flexibility in how DNNs can learn a classification task, models
often learn spurious/shortcut features (Arjovsky, Bottou,
Gulrajani, & Lopez-Paz, 2019; Geirhos et al., 2020; McCoy,
Pavlick, & Linzen, 2020), for example, using image backgrounds
rather than foreground objects (Beery, Van Horn, & Perona,
2018; Xiao, Engstrom, Ilyas, & Madry, 2021), or single diagnostic
pixels rather than other image content (Malhotra, Evans, &
Bowers, 2020). This brings us to a second argument in favor of
embodied training tasks. A dataset of similar size to ImageNet
but with a richer, more ecological output space – for example,
choosing a physical action and its control parameters, or predicting
subsequent frames – would contain a vastly larger amount of infor-
mation, perhaps more fully constraining the model’s behavior.

Existing work validates the impact of training tasks on model
behavior and representations. Even when restricted to training on
ImageNet images, the training objective and/or data augmentation
can affect how well models match human similarity judgments of
images (Muttenthaler, Dippel, Linhardt, Vandermeulen, &
Kornblith, 2023), categorization patterns (Geirhos et al., 2021), per-
formance on real-time and life-long learning benchmarks (Zhuang
et al., 2022), and feature preferences (Hermann et al., 2020), and
also how well they predict primate physiology (Zhuang et al.,
2021) and human fMRI (Konkle & Alvarez, 2022) data. Still, it is
possible to enrich DNN training tasks much further, even for object
categorization (Sun, Shrivastava, Singh, & Gupta, 2017).

We have discussed the promise of training embodied, interactive
agents in rich, ethologically relevant environments. What efforts
have already been made in this direction, and what might they
look like in the future? Past work situating a vision system within
a simulated agent navigating and interacting with its environment
gives promising initial indications that human-like visual behaviors
can emerge in this setting (Haber, Mrowca, Wang, Fei-Fei, &
Yamins, 2018; Hill et al., 2020; Nayebi et al., 2021; Weihs et al.,
2021). The continued development of new, more naturalistic train-
ing environments (Gan et al., 2021; Greff et al., 2022; Puig et al.,
2018; Savva et al., 2019; Xiang et al., 2020) should support pushing
this research program still further toward human-like learning. In
addition, state-of-the-art large language models provide a new
means of communicating richer tasks to models (Chen et al.,
2023), and a new reservoir of human-like knowledge for models
to draw on (Brohan et al., 2023). We predict further work in
these directions will address shortcomings Bowers et al. identify
and yield improved DNN accounts of human vision.
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Abstract

Large language models (LLMs) are not detailed models of
human linguistic processing. They are, however, extremely suc-
cessful at their primary task: Providing a model for language.
For this reason LLMs are important in psycholinguistics: They
are useful as a practical tool, as an illustrative comparative,
and philosophically, as a basis for recasting the relationship
between language and thought.

Neural-network models of language are optimized to solve prac-
tical problems such as machine translation. Currently, when these
large language models (LLMs) are interpreted as models of
human linguistic processing they have similar shortcomings to
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those that deep neural networks have as models of human vision.
Two examples can illustrate this. First, LLMs do not faithfully rep-
licate human behaviour on language tasks (Kuncoro, Dyer, Hale,
& Blunsom, 2018; Linzen & Leonard, 2018; Marvin & Linzen,
2018; Mitchell, Kazanina, Houghton, & Bowers, 2019). For exam-
ple, an LLM trained on a word-prediction task shows similar error
rates to humans overall on long-range subject–verb number
agreement but errs in different circumstances: Unlike humans,
it makes more mistakes when sentences have relative clauses
(Linzen & Leonard, 2018), indicating differences in how gram-
matical structure is represented. Second, the LLMs with better
performance on language tasks do not necessarily have more in
common with human linguistic processing or more obvious sim-
ilarities to the brain. For example, transformers learn efficiently
on vast corpora and avoid human-like memory constraints but
are currently more successful as language models than recurrent
neural networks such as the long- and short-term memory
LLMs (Brown et al., 2020; Devlin, Chang, Lee, & Toutanova,
2018), which employ sequential processing, as humans do, and
can be more easily compared to the brain.

Furthermore, the target article suggests that, more broadly, the
brain and neural networks are unlikely to resemble each other
because evolution differs in trajectory and outcome from the opti-
mization used to train a neural network. Generally, there is an unan-
swered question about which aspects of learning in LLMs are to be
compared to the evolution of our linguistic ability and which to lan-
guage learning in infants but in either case, the comparison seems
weak. LLMs are typically trained using a next-word prediction
task; it is unlikely our linguistic ability evolved to optimize this
and next-word prediction can only partly describe language learn-
ing: For example, infants generalize word meanings based on
shape (Landau, Smith, & Jones, 1988) while LLMs lack any broad
conceptual encounter with the world language describes.

In fact, it would be peculiar to suggest that LLMs are models of
the neural dynamics that support linguistic processing in humans;
we simply know too little about those dynamics. The challenge
presented by language is different to that presented by vision:
Language lacks animal models and debate in psycholinguistics
is occupied with broad issues of mechanisms and principles,
whereas visual neuroscience often has more detailed concerns.
We believe that LLMs have a valuable role in psycholinguistics
and this does not depend on any precise mapping from machine
to human. Here we describe three uses of LLMs: (1) the practical,
as a tool in experimentation; (2) the comparative, as an alternate
example of linguistic processing; and (3) the philosophical, recast-
ing the relationship between language and thought.

(1) An LLM models language and this is often of practical quan-
titative utility in experiment. One straight-forward example is
the evaluation of surprisal: How well a word is predicted by
what has preceded it. It has been established that reaction
times (Fischler & Bloom, 1979; Kleiman, 1980), gaze duration
(Rayner & Well, 1996), and EEG responses (Dambacher,
Kliegl, Hofmann, & Jacobs, 2006; Frank, Otten, Galli, &
Vigliocco, 2015) are modulated by surprisal, giving an insight
into prediction in neural processing. In the past, surprisal was
evaluated using n-grams, but n-grams become impossible to
estimate as n grows and as such they cannot quantify long-
range dependencies. LLMs are typically trained on a task
akin to quantifying surprisal and are superior to n-grams in
estimating word probabilities. Differences between
LLM-derived estimates and neural perception of surprisal may

quantify which linguistic structures, perhaps poorly represented
in the statistical evidence, the brain privileges during processing.

(2) LLMs are also useful as a point of comparison. LLMs combine
different computational strategies, mixing representations of
word properties with a computational engine based on mem-
ory or attention. Despite the clear differences between LLMs
and the brain, it is instructive to compare the performance of
different LLMs on language tasks to our own language ability.
For example, although LLMs are capable of long-range num-
ber and gender agreement (Bernardy & Lappin, 2017;
Gulordava, Bojanowski, Grave, Linzen, & Baroni, 2018;
Linzen, Dupoux, & Goldberg, 2016; Sukumaran, Houghton,
& Kazanina, 2022), they are not successful in implementing
another long-range rule: Principle C (Mitchell et al., 2019),
a near-universal property of languages which depends in its
most straight-forward description on hierarchical parsing.
Thus, LLMs allow us to recognize those aspects of language
which require special consideration while revealing others
to be within easy reach of statistical learning.

(3) In the past, philosophical significance was granted to language
as evidence of thought or personhood. Turing (1950), for
example, proposes conversation as a proxy for thought and
Chomsky (1966) describes Descartes as attributing the pos-
session of mind to other humans because the human capacity
for innovation and for the creative use of language is “beyond
the limitations of any imaginable mechanism.” It is signifi-
cant that machines are now capable of imitating the use of
language. While machine-generated text still has attributes
of awkwardness and repetition that make it recognizable on
careful reading, it would seem foolhardy to predict these
final quirks are unresolvable or are characteristic of the divi-
sion between human and machine. Nonetheless, most of us
appear to feel intuitively that LLMs enact an imitation rather
than a recreation of our linguistic ability: LLMs seem empty
things whose pantomime of language is not underpinned
by thought, understanding, or creativity. Indeed, even if an
LLM were capable of imitating us perfectly, we would still dis-
tinguish between a loved one and their simulation.

This is a challenge to our understanding of the relationship
between language and thought: Either we must claim that, despite
recent progress, machine-generated language will remain unlike
human language in vital respects, or we must defy our intuition
and consider machines to be as capable of thought as we are, or
we must codify our intuition to specify why a machine able to pro-
duce language should, nonetheless, be considered lacking in thought.
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Abstract

Deep convolutional networks exceed humans in sensitivity to
local image properties, but unlike biological vision systems, do
not discover and encode abstract relations that capture impor-
tant properties of objects and events in the world. Coupling net-
work architectures with additional machinery for encoding
abstract relations will make deep networks better models of
human abilities and more versatile and capable artificial devices.

Bowers et al. raise questions about the validity of methods and
types of evidence used to compare deep networks to human
vision. Their discussion also draws attention to serious limitations
of convolutional neural networks for understanding vision. Here
we focus on two ideas. First, compelling evidence is emerging
that deep networks do not capture pervasive and powerful aspects
of visual perceptual capabilities in humans. These limitations
appear to be fundamental and relate to the lack of mechanisms
for extracting and encoding abstract relations. Second, the prob-
lem of mimicry, both in comparing network and human
responses in behavioral tasks and in comparing model unit acti-
vations to brain data, highlights a general difficulty in using
potentially superficial similarities across systems to draw deep
conclusions. We conclude by suggesting that understanding the
mechanisms of visual perception will likely require synergies
between network processing and processes that accomplish sym-
bolic encoding of abstract relations.

Abstract relations in perception

Human perception derives abstract, symbolic representations from
relational information in sensory input (e.g., Baker & Kellman,
2018), enabling visual representations to be widely useful in think-
ing and learning (Kellman & Massey, 2013). Processes like those
found in deep convolutional neural networks (DCNNs) may be
an important part of human vision, but their anchor in concrete,
pixel-level properties makes them unlikely to be sufficient.
DCNNs differ from human perceivers profoundly, for example,
in their access to shape information (Baker, Lu, Erlikhman, &
Kellman, 2018, 2020; Geirhos et al., 2019; Malhotra, Dujmović, &
Bowers, 2022). Whereas shape is the pre-eminent driver of
human object recognition, when shape and texture conflict, net-
works classify by texture. Humans readily see shape in glass figu-
rines, but networks consistently misclassify these (e.g., labeling a
robin as a shower cap, a fox as a chain, and a polar bear as a can
opener). Silhouettes do better, producing around 40% accuracy
(Baker et al., 2018; Kubilius, Bracci, & de Beeck, 2016), but rear-
ranging their parts, which severely impairs human classification,
has strikingly little effect on network responses. Conversely, for cor-
rectly classified silhouettes, adding small serrations along the boun-
dary reduces network classifications to chance or below, while
human perceivers are unaffected. These and other results indicate
that networks extract local shape features but have little or no access
to global shape (Baker et al., 2018, 2020).

Recent research suggests that these findings regarding global
shape reflect broader limitations in DCNNs’ abilities to capture
abstract relations from visual inputs. Baker, Garrigan, Phillips,
and Kellman (2023) attempted to train DCNNs to capture several
perceptual relations that human perceivers detect readily and gen-
eralize from even a small number of examples. These included the
same/different relation (Puebla & Bowers, 2021a, 2021b), judging
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if a probe was inside or outside of a closed contour, and compar-
ing the number of sides of two polygons. Using restricted and
unrestricted transfer learning with networks previously trained
for object classification, we found that networks could come to
exceed chance performance on training sets. Subsequent testing
with novel displays, however, showed that the relations per se
were not learned at all. Although human perceivers rapidly
acquired and accurately applied these relations to new displays,
networks showed chance performance. The limitation of deep
networks in representing and generalizing abstract relations
appears to be fundamental and general (see also Malhotra,
Dujmović, Hummel, & Bowers, 2021).

Methodological issues

The methodological issues raised by Bowers et al. are well-placed.
Similarities between model responses and human judgments, and
between model activations and brain activations, invite us to think
that human processing may resemble deep networks. Yet claims
based on both kinds of similarities may be tenuous. In our
research, we have often seen deep networks produce somewhat
better than chance responding on tests of relational processing,
only to find that they were using some obscure, nonrelational
property that correlated with the relevant relation.

Parallel concerns apply to similarities between activation pat-
terns in brains and DCNN layers. Although intriguing, it is
important to remember that we typically do not know what acti-
vations in either layers of a neural network or in the visual brain
are signaling. Common representations in two systems might pro-
duce similar activation patterns or respectable correlations in rep-
resentational similarity analyses (RSAs), but it is a case of
affirming the consequent when we assume that high representa-
tional similarity scores imply common representations (Saxe,
McClelland, & Ganguli, 2019). These issues may shed light on
puzzling results. For example, Fan, Yamins, and Turk-Browne
(2018) interpreted RSA results as suggesting that deep learning
systems trained on photographs capture abstract representations
such as humans use to see objects from line drawings. RSA was
used to correlate similarity matrices obtained for photos and for
line drawings; prior work used RSA to argue for quantitative sim-
ilarities between advanced layers of the model and primate IT. In
contrast, we tested classification of outline drawings by deep net-
works (VGG-19 and AlexNet) trained on ImageNet for object
classification and found no evidence of successful classification
based on outlines (Baker et al., 2018). For 78% of objects, net-
works would have done better by choosing an ImageNet category
at random, and neither network produced a single correct first-
choice classification. Do networks capture an abstract outline rep-
resentation of objects, as suggested by RSA, yet fail to use it to
classify inputs composed solely of outlines? As Bowers et al. sug-
gest, the answer may lie in confounding in the stimulus properties
that drive representational similarity (cf. Saxe et al., 2019).

Conclusion

A wealth of evidence suggests that biological vision systems
extract and represent abstract relations. DCNNs far exceed
humans in sensitivity to local image properties, but for humans,
local sensory activations are transient, rapidly discarded, and
used to discover and encode relations that capture important
properties of objects and events in the world. Peering beyond
observed similarities that Bowers et al. suggest may be superficial,

these differences between networks and brains may be deep and
fundamental. More work is needed to discern the sources of the
differences. Combining network architectures with additional
machinery for encoding abstract relations might make deep net-
works better models of human abilities and more versatile and
capable artificial devices.
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Abstract

Vision is inseparably connected to perceptual awareness which
can be seen as the culmination of sensory processing. Studies
on conscious vision reveal that object recognition is just one
of the means through which our representation of the world is
built. We propose an operationalization of subjective experience
in the context of deep neural networks (DNNs) that could
encourage a more thorough comparison of human and artificial
vision.

The target article comprehensibly deconstructs common miscon-
ceptions, such as models of human vision that can be reduced to
mechanisms of object recognition or that useful analogies
between neuronal and artificial architectures can be drawn solely
from accuracy scores and their correlations with brain activity. We
fully agree that such oversimplifications need to be avoided if deep
neural networks (DNNs) are to be considered accurate models of
vision. Troubles stemming from similar oversimplifications are
well-known in consciousness research. One of the main obstacles
for the field is the separation of mechanisms that process visual
information from those that transform it into the conscious activ-
ity of seeing. Here, we offer a high-level outlook on the human
vision from this perspective. We believe it could serve as a guiding
principle for building more ecologically valid artificial models. It
would also lead to better testing criteria for assessing the similar-
ities and differences between humans and DNNs that go beyond
object recognition.

When presented with an object, it appears that we first see it in
all of its details and only then recognize it. However, experimental
evidence suggests that, under carefully controlled conditions, indi-
viduals can correctly categorize objects while denying seeing them
(Lamme, 2020). The discrepancy between objective performance
(i.e., correct categorization) and subjective experience of seeing
convincingly illustrates the presence of unconscious processing
of perceptual information (Mudrik & Deouell, 2022). It also high-
lights that categorization may refer to different neural processes
depending on the type of object. Identification of faces is a com-
mon example of fast automatic processing of a complex set of fea-
tures that allows us to easily recognize each other. It also
demonstrates problems with taking brain activity as an indicator
of successful perception. The fusiform gyrus is selectively acti-
vated when participants are presented with images of faces
(Fahrenfort et al., 2012; Haxby, Hoffman, & Gobbini, 2000).
However, this activation can be found even if the participant
reports no perception (Axelrod, Bar, & Rees, 2015). Similar spe-
cific neural activations can be observed in response to other com-
plex stimuli (e.g., one’s name) during sleep (Andrillon & Kouider,
2020). Therefore, while behavioural responses and brain activity
can provide insights into the extent of processing evoked by cer-
tain stimuli, they do not equate to conscious vision.

Feature extraction and object categorization are not the only
visual processes that can occur without consciousness. There is
evidence of interactions between already differentiated objects
that alter each other neural responses when placed closely in
the visual field (Lamme, 2020). This includes illusions like the
Kanizsa triangle, which requires the integration of multiple
objects (Wang, Weng, & He, 2012). However, these processes
seem to be restricted to local features and are not present when
processing requires information integration from larger parts of
the visual scene. This is precisely the moment when conscious

perception starts to play a role, enabling the organization of distinct
elements in the visual field into a coherent scene (e.g., figure-
ground differentiation; Lamme, Zipser, & Spekreijse, 2002).
Experimental evidence suggests that conscious vision allows for bet-
ter integration of spatially or temporally distributed information, as
well as higher precision of the visual representations (Ludwig,
2023). A coherent scene can then be used to guide adequate actions
and predict future events. From this perspective, while object recog-
nition is an essential part of the visual processing pipeline, it cannot
fulfil the representational function of vision alone.

Another notion that complicates comparisons between humans
and DNNs is temporal integration. Our perception is trained from
birth on continuous perceptual input that is highly temporally cor-
related. Scenes are not a part of a randomized stream of unrelated
snapshots. Temporal integration enables our visual system to aug-
ment the processing of stimuli with information extracted from
the immediate past. This type of information can involve, for exam-
ple, changes in the relative position of individuals or objects.
Subsequently, this leads to one of the crucial discrepancies between
human and artificial vision (the target article identifies aspects of it
in sect. 4.1.1–4.1.7). DNNs are built to classify ensembles of pixels in
a digital image, while human brains interpret everything as two-
dimensional (2D) projections of three-dimensional (3D) objects.
This fact imposes restrictions on possible interpretations of percep-
tual stimuli (which can lead to mistakes) but ultimately allows the
visual system to not rely solely on immediate physical stimulation.
This in turn makes perception more stable and useful in the context
of interactions with the environment. These processes may occur
without human-like consciousness. However, consciousness seems
to increase the temporal integration of stimuli, strongly shaping
the outcome of visual processing.

In this commentary, we aimed to justify why consciousness
should be taken into account while modelling human vision with
DNNs. Similar inspirations from cognitive science have proven
very successful in the recent past in the case of attention
(Vaswani et al., 2017) and some researchers already proposed
consciousness-like mechanisms (Bengio, 2019). However, even in
healthy humans, reliable measurement of consciousness is difficult
both theoretically (Seth, Dienes, Cleeremans, Overgaard, & Pessoa,
2008) and methodologically (Wierzchoń, Paulewicz, Asanowicz,
Timmermans, & Cleeremans, 2014). The task is even more chal-
lenging if one would attempt to implement such measurement in
artificial neural networks (Timmermans, Schilbach, Pasquali, &
Cleeremans, 2012). Nevertheless, probing the capabilities of
DNNs in realizing functions connected to conscious vision might
prove necessary for comparison between DNNs and humans. To
make such a comparison more feasible, we would like to propose
a rudimentary operationalization of subjective experience as “con-
text dependence.” In the case of visual perception, context can be
defined very broadly as all the spatially or temporally distant ele-
ments of a visual scene that alter its processing. It also suggests
that the global integration of perceptual features is a good approx-
imation of the unifying function of conscious vision. Interestingly,
we note that most of the phenomena mentioned in sect. 4.2 of the
target article can be reformulated as examples of some form of con-
text dependence, making this overarching principle easy to convey.
Showing that DNNs are similar to humans, that is, are selectively
susceptible to illusions, alter categorization based on other objects
in the scene, or demonstrate object invariance, would be a strong
argument in favour of the functional similarity.
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Abstract

Bowers et al. propose to use controlled behavioral experiments
when evaluating deep neural networks as models of biological
vision. We agree with the sentiment and draw parallels to the
notion that “neuroscience needs behavior.” As a promising
path forward, we suggest complementing image recognition
tasks with increasingly realistic and well-controlled task environ-
ments that engage real-world object recognition behavior.

Bowers et al. describe the importance of targeted behavioral
experiments when evaluating deep neural networks as models
of biological vision. We agree with the sentiment and draw paral-
lels to the notion that “neuroscience needs behavior” (Krakauer,
Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017). A major
point raised by Bowers et al. is that one system – a neural network
– can provide an excellent prediction of another system – the
visual system – while relying on entirely different mechanisms.
Carefully designed behavioral experiments are needed to assess
how good the match really is. This point echoes the historic mul-
tiple realizability argument highlighted by Krakauer et al., which
states that different (neural) mechanisms can solve the same com-
putational problem. Krakauer and colleagues proposed the same
solution: Carefully designed behavioral experiments, to generate
and test hypotheses about the neural mechanisms that give rise
to behavior. In essence, neuroscience and modeling both need
behavior to guide hypothesis testing and theory development in
their endeavor to understand how the brain works.

What types of behavioral experiments are best suited to eval-
uate deep neural networks as models of biological vision? As sug-
gestions for the modeling community, we take inspiration from
solutions pioneered by neuroscience in recent years (e.g., Snow
& Culham, 2021). There is growing realization that real-world
object recognition engages distinct neural responses compared
to the behaviors involved with standard image recognition
tasks. In the traditional experiment, observers respond with but-
ton presses to images displayed on a computer monitor as brain
activity is recorded. This approach has provided important
insights into biological vision and has served as a great starting
point for model evaluation (e.g., Jozwik, Kietzmann, Cichy,
Kriegeskorte, & Mur, 2023). However, traditional experiments
do not fully capture how humans interact with objects in real-
world environments.

We suggest that our experiments should increasingly mimic
real-world behavior, by: (1) including tasks beyond image recog-
nition when evaluating deep neural networks, and (2) developing
platforms that enable simulation of realistic task environments.
Using these environments, both humans and models can be sub-
jected to a wide range of real-world behavioral tasks such as object
tracking (e.g., following a moving animal) or visual search (e.g.,
finding objects in cluttered scenes); also see Peters and
Kriegeskorte (2021) for discussions. The researcher will be offered
a level of control that supports carefully designed experiments
while maintaining ecological validity. The proposed platforms
are now within reach thanks to advances in virtual reality and
three-dimensional (3D) computer graphics, which are yielding
powerful game engines accessible to psychologists and modelers
alike. Promising recent approaches have extended the Unity
game engine to the design of psychology experiments (e.g.,
Alsbury-Nealy et al., 2022; Brookes et al., 2020; Peters, Retchin,
& Kriegeskorte, 2022; Starrett et al., 2021) and the simulation of
interactive physics (e.g., ThreeDWorld; Gan et al., 2021).

Importantly, we suggest that the behavior in task environments
should include the measurement of continuous dependent vari-
ables that unfold over time. Traditional cognitive psychology
and neuroscience experiments use binary metrics such as “yes/
no” or “multiple-choice” questions with one correct option
among competitors (e.g., image classification). By contrast,
humans in the real world have evolved to complete unstructured
tasks in service of survival-related goals. We use cognitive abilities
honed through millions of years of primate evolution and over a
decade of childhood development to navigate environments, build
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tools, find food, solve problems, and interact with other humans
in cooperative and competitive settings. These dynamic behaviors
involve head, body, and limb movements (Adolph & Franchak,
2017) and are based on internal decisions made from the input
received from our sensory organs at millisecond timescales
(Stanford, Shankar, Massoglia, Costello, & Salinas, 2010).
Measuring the continuous behavioral dynamics may allow for
richer understanding compared to discrete variables that average
over many experimental trials (Spivey, 2007; for object memory
dynamics, see Li, Yuan, Pun, & Barense, 2023; for navigation
dynamics, see de Cothi et al., 2022; for “continuous psychophys-
ics,” see Straub & Rothkopf, 2022).

The models we build should also explain neural activity mea-
sured as humans complete different experimental tasks. Not only
will this approach create a wealth of interdisciplinary opportuni-
ties, but modelers could take advantage of psychology and neuro-
science theory which continues to make important predictions
about behavior (e.g., Behrens et al., 2018; Cowell, Barense, &
Sadil, 2019). As one example, the anterior temporal lobes are the-
orized to be a centralized “hub” region of the human brain
involved in combining multiple sensory features to form object
concepts (Lambon Ralph, Jefferies, Patterson, & Rogers, 2017).
This structure supports the formation of new concepts in tasks
involving the combination of 3D shape and sound (Li et al.,
2022). Furthermore, damage to the anterior temporal lobes results
in predictable impairments on memory, perception, and learning
tasks (i.e., semantic dementia; Barense, Rogers, Bussey, Saksida, &
Graham, 2010; Hodges & Patterson, 2007). A complete model
should be able to make novel predictions about behavioral and
brain responses while also accounting for existing data across
many tasks.

We have outlined concrete suggestions toward a collaborative
path that we envision to be productive. We suggest that modelers
should design realistic tasks in virtual reality, measure the contin-
uous behavioral dynamics that unfold over time, and assess corre-
spondences to brain activity across many tasks. However, there are
also many challenges that lie ahead before these suggestions can
be fully realized: The expertise required to span cognitive psychol-
ogy and neuroscience in addition to computational modeling is
daunting. Developing naturalistic real-world experiments requires
programming skills often not taught in psychology and neurosci-
ence curriculums, whereas theoretical models important for
understanding human cognition are often not taught in computer
science. Fully characterizing the dynamics of behavior and brain
activity will likely require theory and measurement techniques
that have not yet been developed (Druckmann & Rust, 2023).
For these reasons, we suggest an incremental, highly interdisci-
plinary and collaborative approach toward real-world experi-
ments, which we hope will lead to a more complete
understanding of how the human brain may support object-
centered representations.

Our suggestions reemphasize the centrality of behavior –
described as “psychological findings” by Bowers et al. – across
both the development of more human-like neural networks as
well as in the continued understanding of the human brain.
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Abstract

Deep neural network models have revived long-standing debates
on the value of explanation versus prediction for advancing sci-
ence. Bowers et al.’s critique will not make these models go away,
but it is likely to prompt new work that seeks to reconcile
explanatory and predictive models, which could change how
we determine what constitutes valuable scientific knowledge.

Explanatory power and predictive accuracy are different quali-
ties, but are they inconsistent or incompatible? Bowers et al.’s
critique of deep neural network models of biological vision
resurfaces age-old debates and controversial questions in the
history of science (Breiman, 2001; Hempel & Oppenheim,
1948). First, must an explanatory model have predictive accu-
racy to be considered scientifically valuable? Similarly, must a
predictive model have explanatory power to have scientific
value? Second, what kinds of models are better for advancing
scientific knowledge, and how should we determine the scien-
tific value of models?

To appreciate the significance of Bowers et al.’s critique, let
us consider explanation and prediction as two orthogonal
dimensions rather than two extremes on a continuum. As
shown in Figure 1a, some of the most successful models and
theories in the history of humankind have occupied

different positions in this two-dimensional space: Theories
like relativity and quantum electrodynamics are located in the
top-right quadrant (i.e., very high explanatory power and pre-
dictive accuracy), whereas Darwinian evolution sits at the
bottom-right quadrant (i.e., high explanatory power but little
predictive accuracy, or at least cannot be tested for predictive
accuracy yet). Importantly, successful models in disciplines
ranging from physics to biology generally have high explana-
tory power.

Younger disciplines such as neuroscience and psychology – to
which biological vision belongs – often aspire to emulate more
established disciplines by developing models and theories with
increasing explanatory power over time. Bowers et al. also prefer
explanatory models and emphasize the importance of using con-
trolled laboratory experimentation to test causal mechanisms and
develop explanatory models and theories. Since researchers in
these disciplines have historically valued models with explanatory
power more than those with predictive accuracy, the consequence
is that existing models are mostly located in the bottom two quad-
rants (Fig. 1a; some explanatory power but relatively low predic-
tive accuracy). Models with high predictive accuracy are rare or
even unheard of (e.g., Eisenberg et al., 2019; Yarkoni &
Westfall, 2017).

Neural network models of biological vision have therefore
introduced a class of scientific models that occupies a unique
location in the two-dimensional space in Figure 1a (top-left quad-
rant). One could even argue that it might be the first time the dis-
cipline (including neuroscience and psychology) has produced
models that have greater predictive accuracy than explanatory
power. If so, it should come as no surprise that researchers –
many of whom have been trained to rely primarily on experimen-
tation to test theories – would feel uncomfortable with models
with such different qualities and even question the scientific
value of these models, despite recent calls to integrate explanation
and prediction in neighboring disciplines (Hofman et al., 2021;
Yarkoni & Westfall, 2017).

The current state of research on deep neural network models
of biological vision reflects a critical juncture in the history of
neuroscience as well as psychological and social science.

Figure 1 (Lin). Scientific value of models with different degrees of two qualities: Explanatory power and predictive accuracy. (a) Bowers et al. value explanation over
prediction, such that models with greater explanatory power are preferred. (b) Alternative value function that values both qualities equally. Hotter colors denote
greater scientific value, whereas cooler colors denote less scientific value.
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The long-standing tension between different philosophical
approaches to theory development no longer exists only in
the abstract – arguably for the first time, researchers have to
reconcile, in practice, explanatory models with their predictive
counterparts.

Bowers et al. emphasize the value of experimentation and the
need for models to explain a wide range of experimental results.
But this approach is not without limitations: When experiments
and models become overly wedded to each other, models might
lose touch with reality because they explain phenomena only
within but not beyond the laboratory (Lin, Werner, & Inzlicht,
2021).

Should explanation be favored over prediction? The prevailing
approach to theory development has certainly favored explanation
(Fig. 1a), but the state of research on deep neural network
models suggests that developing models with predictive accuracy
might be a complementary approach that could help to test the
relevance of explanatory models that have been developed
through controlled experimentation. Predictive models could
also be used to discover new explanations or causal mechanisms.
If so, it is conceivable that current and future generations of
researchers (who have been trained to also consider predictive
accuracy) might come to value explanation and prediction equally
(Fig. 1b).

Deep neural network models are becoming increasingly popu-
lar in a wide range of academic disciplines. Although Bowers
et al.’s critique is unlikely to reverse this trend, it highlights
how new methods and technological advances can turn age-old
philosophical debates into practical issues researchers now have
to grapple with. How the explanatory and predictive approaches
are reconciled or integrated in the coming years by researchers
working on biological vision is likely to have far-reaching conse-
quences on how researchers in other disciplines think about the-
ory development and the philosophy of science. And it is also
likely to reshape our views of what constitutes valid and valuable
scientific knowledge.
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Abstract

Bowers et al. argue that deep neural networks (DNNs) are poor
models of biological vision because they often learn to rival
human accuracy by relying on strategies that differ markedly
from those of humans. We show that this problem is worsening
as DNNs are becoming larger-scale and increasingly more accu-
rate, and prescribe methods for building DNNs that can reliably
model biological vision.

Over the past decade, vision scientists have turned to deep neural
networks (DNNs) to model biological vision. The popularity of
DNNs comes from their ability to achieve human-level perfor-
mance on visual tasks (Geirhos et al., 2021) and the seemingly
concomitant correspondence of their hidden units with biological
vision (Yamins et al., 2014). Bowers et al. marshal evidence from
psychology and neuroscience to argue that while DNNs and bio-
logical systems may achieve similar accuracy on visual bench-
marks, they often do so by relying on qualitatively different
visual features and strategies (Baker, Lu, Erlikhman, & Kellman,
2018; Malhotra, Evans, & Bowers, 2020, 2022). Based on these
findings, Bowers et al. call for a reevaluation of what DNNs can
tell us about biological vision and suggest dramatic adjustments
going forward, potentially even moving on from DNNs alto-
gether. Are DNNs the wrong paradigm for modeling biological
vision?

Systematically evaluating DNNs for biological vision

While this commentary identifies multiple shortcuts in DNNs
that are commonly used in vision science, such as ResNet and
AlexNet, it does not delve into the root causes of these issues
or how widespread they are across different DNN architectures
and training routines. We previously addressed these questions
with ClickMe, a web-based game in which human participants
teach DNNs how to recognize objects by highlighting category-
diagnostic visual features (Linsley, Eberhardt, Sharma, Gupta, &
Serre, 2017; Linsley, Shiebler, Eberhardt, & Serre, 2019). With
ClickMe, we collected annotations of the visual features that
humans rely on to recognize approximately 25% of ImageNet
images (https://serre-lab.github.io/Harmonization/). Human fea-
ture importance maps from ClickMe reveal startling regularity:
Animals were categorized by their faces, whereas inanimate
objects like cars were categorized by their wheels and headlights
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(Fig. 1a). Human participants were also significantly more accurate
at rapid object classification when basing their decisions on these
features rather than image saliency. In contrast, while DNNs some-
times selected the same diagnostic features as humans, they often
relied on “shortcuts” for object recognition (Geirhos et al., 2020).
For example, a DNN called the Vision transformer (ViT) relied
on background features, like grass, to recognize a hare, whereas
human participants focused almost exclusively on the animal’s
head (Fig. 1a). Even more concerning is that the visual features
and strategies of humans andDNNs are becoming increasinglymis-
aligned as newer DNNs become more accurate (Fig. 1b). We and
others have observed similar trade-offs between DNN accuracy
on ImageNet and their ability to explain various human behavioral
data and psychophysics (Fel, Felipe, Linsley, & Serre, 2022; Kumar,
Houlsby, Kalchbrenner, & Cubuk, 2022). Our work indicates that
the mismatch between DNN and biological vision identified by
Bowers et al. is pervasive and worsening.

The next generation of DNNs for biological vision

Bowers et al. argue that the inability of DNNs to learn human-like
visual strategies reflects architectural limitations. They are correct
that there is a rich literature demonstrating how mechanisms
inspired by neuroscience can improve the capabilities of DNNs,
helping them learn perceptual grouping (Kim, Linsley, Thakkar,
& Serre, 2020; Linsley, Kim, Ashok, & Serre, 2019a; Linsley,
Kim, Veerabadran, Windolf, & Serre, 2018, 2021), visual reason-
ing (Kim, Ricci, & Serre, 2018; Vaishnav et al., 2022; Vaishnav &
Serre, 2023), robust object recognition (Dapello et al., 2020), and
to more accurately predict neural activity (Bakhtiari, Mineault,
Lillicrap, Pack, & Richards, 2021; Kubilius et al., 2018; Nayebi
et al., 2018). The other fundamental difference between DNNs
and biological organisms is how they learn; humans and DNNs
learn from vastly different types of data with presumably different
objective functions. We believe that the limitations raised by
Bowers et al. result from a mismatch in data diets and objective
functions because we were able to significantly improved the
alignment of DNNs with humans by introducing ClickMe data
into their training routines (“Neural harmonizer,” Fig. 1).

Biologically inspired data diets and objective functions

We believe that the power of DNNs for biological vision is from
their ability to generate computational- and algorithmic-level
hypotheses about vision, which will guide experiments to identify
plausible circuits. For instance, the great success of gradient
descent and backpropagation for training DNNs has inspired
the search for biologically plausible approximations (Lillicrap,
Santoro, Marris, Akerman, & Hinton, 2020). Visual neuroscience
is similarly positioned to benefit from DNNs if we can improve
their alignment with biology.

The most straightforward opportunity for aligning DNNs with
biological vision is to train them with more biologically plausible
data and objective functions (Smith & Slone, 2017 Richards et al.,
2019). There have been efforts to do this with first-person video,
however, these efforts have failed to yield much benefit in com-
puter vision or other aspects of biological vision (Orhan, Gupta,
& Lake, 2020; Sullivan, Mei, Perfors, Wojcik, & Frank, 2021;
Zhuang et al., 2021), potentially because the small scale of these
datasets makes them ill-suited for training DNNs. An alternative
approach is to utilize advances in three-dimensional (3D) com-
puter vision, like neural radiance fields (Mildenhall et al., 2020),
to generate spatiotemporal (and stereo) datasets for training
DNNs that are infinitely scalable and can be integrated with
other modalities, such as somatosensation and language. It is
also very likely that objective functions that will lead to human-
like visual strategies and features from these datasets have yet to
be discovered. However, promising directions include optimizing
for slow feature analysis (Wiskott & Sejnowski, 2002) and predic-
tive coding (Lotter, Kreiman, & Cox, 2016; Mineault, Bakhtiari,
Richards, & Pack, 2021), which could help align DNNs with
humans without relying on ClickMe data.

Aligned DNNs may be all we need

Bowers et al. point out a number of ways in which DNNs fail as
models of biological vision. These problems are pervasive and
likely caused by the standard image datasets and training routines
of DNNs, which are guided by engineering rather than biology.
Bowers et al. may well be right that an entirely new class of

Figure 1 (Linsley and Serre). A growing misalignment between biological vision and DNNs (adapted from Fel et al., 2022). (a) Diagnostic features for object clas-
sification differ between humans and DNNs. (b) The Spearman correlation between human and DNN feature importance maps is decreasing as a function of DNN
accuracy on ImageNet. This trade-off can be addressed with the neural harmonizer — a method for explicitly aligning DNN representations with humans for object
recognition.
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models is needed to account for biological vision, but at the
moment there are no viable alternatives. Until other model classes
can rival human performance on visual tasks, we suspect that the
most productive path forward toward modeling biological vision
and aligning DNNs with biological vision is to develop more bio-
logically plausible data diets and objective functions.
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Abstract

Current deep neural networks (DNNs) are far from being able to
model the rich landscape of human visual experience. Beyond
visual recognition, we explore the neural substrates of visual
mental imagery and other visual experiences. Rather than shared
visual representations, temporal dynamics and functional con-
nectivity of the process are essential. Generative adversarial net-
works may drive future developments in simulating human
visual experience.
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Bowers et al. report several lines of evidence challenging the
alleged similarities between deep neural network (DNN) models
of visual recognition and their biological counterparts. However,
human visual experience is not limited to visual recognition. In
addition to the case of visual illusion presented by Bowers
et al., it is important for models of the human visual system to
consider a range of other visual experiences, including visual hal-
lucinations, dreams, and mental imagery. For example, most of us
can “visualize” objects in their absence, by engaging in visual
mental imagery. Using partially shared neural machinery used
for visual perception, visual mental imagery allows us to make
predictions based on past experiences, imagine future possibilities,
and simulate the possible outcomes of our decisions. Our com-
mentary focuses on these relationships and is structured into
four key points.

First, shared neural substrates of visual perception and visual
mental imagery include high-level visual regions in the ventral
temporal cortex (Bartolomeo, Hajhajate, Liu, & Spagna, 2020;
Spagna, Hajhajate, Liu, & Bartolomeo, 2021). In the absence of
visual input, these regions are activated top-down by other sys-
tems, such as the semantic system and the frontoparietal attention
networks. Bowers et al. highlighted the challenge of modeling top-
down activity with feedforward DNNs. It is currently believed that
the visual system relies on distinct feedback signals to cortical lay-
ers and exhibits individual temporal dynamics for different visual
experiences. In particular, visual stimulation modulates activities
in mid-layers, while contextual information or illusory content
feedbacks to superficial layers, and visual imagery feedbacks to
deeper cortical layers (Bergmann, Morgan, & Muckli, 2019;
Muckli et al., 2015). Visual imagery exhibits temporal overlap
with perceptual processing during late stages of processing
(Dijkstra, Mostert, Lange, Bosch, & van Gerven, 2018), likely cor-
responding to activity in the ventral temporal cortex but not in
the early visual cortex (Spagna et al., 2021). In contrast, patients
with Charles Bonnet hallucinations show a gradual increase in
activity in the early visual cortex, which then gradually decreases
as it moves further along the visual hierarchy (Hahamy, Wilf,
Rosin, Behrmann, & Malach, 2021).

Second, evidence from neuropsychology, neuroimaging, and
direct cortical stimulation suggests striking differences in the
activity of the ventral temporal cortex in the two hemispheres
when processing visual information (Liu, Spagna, &
Bartolomeo, 2022b). While direct cortical electrical stimulation
tends to produce visual hallucinatory experiences predominantly
when applied to the right temporal lobe, there is a strong lateral-
ization to the left hemisphere for voluntary visual mental imagery.
These asymmetries could potentially stem from particular hemi-
spheric networks’ predispositions toward constructing mental
models of the external environment or verifying them through
real-world testing (Bartolomeo & Seidel Malkinson, 2022). After
unilateral brain strokes, in some cases the healthy hemisphere
can compensate for the visual deficit (Bartolomeo & Thiebaut
de Schotten, 2016). At present, DNN models do not incorporate
either hemispheric asymmetries or the potential reorganization of
these asymmetries following a stroke.

Third, some otherwise neurotypical individuals show unusu-
ally weak or strong visual mental imagery (aphantasia and hyper-
phantasia) (Keogh, Pearson, & Zeman, 2021; Milton et al., 2021).
Aphantasic individuals perform visual imagery and visual percep-
tual tasks with similar accuracy than typical imagers, but with
slower response times (Liu & Bartolomeo, 2023). Consistent
with these behavioral results, ultra-high field fMRI shows similar

activation patterns between typical imagers and individuals with
congenital aphantasia (Liu et al., 2023). The fusiform imagery
node, a high-level visual region in the left-hemisphere ventral
temporal cortex (Spagna et al., 2021), coactivates with dorsolateral
frontoparietal networks in typical imagers, but is functionally iso-
lated from these networks in aphantasic individuals during both
imagery and perception. These findings suggest that high-level
visual information in the ventral cortical stream is not sufficient
to generate a conscious visual experience, and that a functional
disconnection from frontoparietal networks may be responsible
for the lack of experiential content in visual mental imagery in
aphantasic individuals.

Fourth, in line with the previous point on the importance of
frontoparietal networks, the way we subjectively experience both
perceptions and mental images relies heavily on the interaction
with other cognitive processes, such as attention and visual work-
ing memory. Despite their importance, these factors are not taken
into account in DNN modeling. A recent study using human
intracerebral recordings and single-layer recurrent neural network
modeling found that the dynamic interactions between specific
frontoparietal attentional networks and high-level visual areas
play a crucial role in conscious visual perception (Liu et al., 2023).

This evidence from the biological human brain can inspire
future developments of DNNs in simulating the cognitive archi-
tecture of human visual experience. Generative adversarial net-
works may be promising candidates to drive these efforts
forward. For instance, imagery mechanisms could act as the gen-
erator of quasi-perceptual experiences, while reality monitoring
could serve as the discriminator to distinguish between sensory
inputs from real or imagined sources (Gershman, 2019; Lau,
2019). Recent studies investigated involuntary visual experiences
using generative neural network models, such as in memory
replay (van de Ven, Siegelmann, & Tolias, 2020), intrusive imag-
ery (Cushing et al., 2023), and adversarial dreaming (Deperrois,
Petrovici, Senn, & Jordan, 2022). Regarding voluntary visual men-
tal imagery, some key strategies may involve modeling the
retrieval process of representations pertaining to semantic infor-
mation and visual features (Liu et al., 2023), and incorporating
biologically inspired recurrence in visual imagery processing
(Lindsay, Mrsic-Flogel, & Sahani, 2022).

In conclusion, we suggest that shared representations in visual
cortex are not the primary factor in generating and distinguishing
distinct visual experiences. Rather, the temporal dynamics and
functional connectivity of the process are essential. Current
DNNs are inadequate to accurately model the complexity of
human visual experience. Biologically inspired generative adver-
sarial networks may provide novel ways of simulating the varieties
of human visual experience.
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Abstract

An incomplete science begets imperfect models. Nevertheless,
the target article advocates for jettisoning deep-learning models
with some competency in object recognition for toy models eval-
uated against a checklist of laboratory findings; an approach
which evokes Alan Newell’s 20 questions critique. We believe
their approach risks incoherency and neglects the most basic
test; can the model perform its intended task.

The first author remembers a discussion with fellow graduate stu-
dents in the late 1990s. Each offered a prediction for when a
model would be able to take photographic images as inputs and pro-
vide labels. Predictions ranged from a hundred years into the future
to never. Similar estimates were provided for speech recognition.
Albeit imperfect, we now have models that can perform both
tasks. We marvel at the speed of progress and how poorly placed
cognitive scientists were to anticipate it. In fairness, perhaps it
would take that long to achieve these results if models were built
by psychologists on the basis of their laboratory studies! Related dis-
cussions may have occurred in adjacent fields, such as linguistics.

In their target article, the authors correctly note some limita-
tions of deep networks as models of vision. However, every model
in an incomplete science is imperfect so these criticisms are
largely benign, especially in a field that is rapidly progressing.
The authors’ key critique seems to be that image-computable
models (i.e., models that actually attempt object recognition) are
poor models of human vision because they do not account for
findings from a selected set of laboratory studies. The authors
invite us to return to the halcyon days before deep learning to a
time of box-and-arrow models in cognitive psychology and
“blocks world” models of language (Winograd, 1971), when mod-
elers could narrowly apply toy models to toy problems safe in the
knowledge that they would not be called upon to generalize
beyond their confines nor pave the way for future progress.

Essentially, the authors are advocating for what Alan Newell
cautioned against in his classic essay, “You can’t play 20 questions
with nature and win” (Newell, 1973). Newell worried that all the
clever experiments psychologists conducted would not integrate
into any coherent understanding of cognition. We agree – it
seems unlikely progress will be made by amassing yet more labo-
ratory findings. What will tie all these results together to make
them more than cognitive science trivia?

One answer is models. Perhaps the most basic test for a model
is whether it can perform its intended task. Once the model has
some basic competency, then secondary questions can be consid-
ered, like how well the model accounts for aspects of human
behavior and brain response. A model that cannot pass the first
hurdle, such as an object recognition model that cannot process
sensory inputs (e.g., photographic images), is of little use for
understanding how the brain accomplishes such feats. Models
that can apply to the task can be compared on how well they
account for human data (i.e., model selection). Completing the
scientific loop, competing models can guide empirical efforts by
suggesting informative experiments that tease apart their predic-
tions. Instead, the authors advocate for skipping the crucial step
of considering models that have basic competency and proceeding
to evaluating accounts against a checklist of selected findings from
laboratory studies.

This 20 questions mindset naturally pairs with the falsification
approach the authors advocate. However, we do not share their
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enthusiasm for falsifying models that are a priori wrong and
incomplete. Instead, we suggest a Bayesian or evidential philoso-
phy of science is more appropriate in which one aims for the
model that is most likely given the data (which could include
data from laboratory studies). Of course, the most important
empirical finding to address for a model of human object recog-
nition is basic competency in object recognition. It seems odd to
worry about fine-grain distinctions observed in the laboratory
studies when the basics are missing; it is like worrying about a
car’s window tint when it lacks an engine and transmission.

Finally, the authors seem oddly reluctant to acknowledge or
engage with work that successfully addresses their criticisms.
For example, they criticize correlative approaches to assessing cor-
respondences between brain regions and models layers, such rep-
resentation similarity analyses (RSAs) and encoding approaches,
but neglect to mention work that has successfully addressed
these deficiencies. Recent work evaluates correspondences under
the mantra “correlation does imply correspondence” by directly
interfacing brain activity with a model layer to evaluate whether
brain activity can drive the model toward an appropriate output
(i.e., behavior; Sexton & Love, 2022). Notice this approach
requires a model that can perform object recognition, which fur-
ther highlights the value of image-computable models in evaluat-
ing neurocomputational hypotheses. Another example is the
authors’ omission of large-scale “prediction” studies that success-
fully identify deficiencies in deep-learning models and adjudicate
between competing models. For example, Roads and Love (2021)
derived an embedding of 50k images based on human judgments
and found all deep-learning models diverged from human seman-
tic judgments with better performing models from an engineering
perspective being less human aligned. This type of large-scale
study provides a general and stringent test of how human aligned
representations are in deep-learning models. The authors men-
tion that deep networks are susceptible to shortcut learning,
which is true, but they neglect to discuss the literature devoted
to ameliorating this issue, including approaches that successfully
address the authors’ own manipulations (e.g., adding a colored
dot to an image) to create shortcuts (Dagaev et al., 2023). The
authors state that comparing models differing on a single factor
is uncommon despite such comparisons being standard in
machine learning papers, referred to as ablation studies. All
these cases indicate that progress is being made with image-
computable models on the very issues the authors highlight.

In conclusion, the fact that deep networks with some compe-
tency in object recognition fail to account for findings from some
laboratory tasks has led the authors to conclude deep-learning
models are of limited value. One might instead conclude that
the laboratory studies themselves are limited in paving the way
toward a complete model of human vision. After all, our precon-
ceived notions of how vision works guide these study designs.
Some laboratory studies will prove fundamental to explaining
human vision, some will be irrelevant. It seems to us that one
will never be able to determine which is which in the absence
of models with basic competencies.
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Abstract

Depending on what we mean by “explanation,” challenges to the
explanatory depth and reach of deep neural network models of
visual and other forms of intelligent behavior may need revisions
to both the elementary building blocks of neural nets (the
explananda) and to the ways in which experimental environ-
ments and training protocols are engineered (the explanantia).
The two paths assume and imply sharply different conceptions
of how an explanation explains and of the explanatory function
of models.

By one definition of “explanation,” enjoining deep neural network
researchers to directly address the functional capabilities and
behaviors exhibited by the neurological networks of human brains
– as Bowers et al. do – is similar to requiring engineers of digital
clocks to use their to explain the specific workings of analog
watch subassemblies and components. It also highlights the dif-
ferences between simulation and emulation on the one hand,
and between explanation and prediction or enaction on the
other. Each of these approaches spells out a very different concep-
tion of what explanations are for, and how they explain.

A digital and an analog clock both keep (relative) time. An
analog clock does so by converting energy stored in the transla-
tional movement of a spring into the rotational energy of a set
of gears whose ratios are designed to register time lapses indexed
by the movement of a catchment that indexes a set duration (of,
say, 1 second). A digital clock starts with a crystal oscillator vibrat-
ing at a high frequency (e.g., 60 Hz), which is digitally subdivided
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down to the desired frequency (1 Hz) of a wave whose consecutive
peaks mark the desired interval. Although the inner components
and assemblies of the clocks are very different, the digital clock
“models” the analog clock in the sense that it replicates its func-
tion; and, vice versa. But the two clocks do not share common
components, which is why we cannot use our understanding of
the digital clock’s mechanisms to understand “how the analog
clock works,” if by understand we mean emulate, or, replicate at
the component and subassembly level the function of each com-
ponent or subassembly of an entity – in the way in which one dig-
ital computer can emulate the workings of another by executing
all of the functions of each of its assemblies.

Explanation as means for emulation: The “artificial replication”
approach. If we take the “emulation” route to explanation, we are
confronted with a component-level “modeling mismatch”
between neurons in a neural network storing information in
weights that are integer or rational (i.e., finite-precision) numbers
and neurons in biological neurons whose weights can be real
numbers that are theoretically capable of storing infinite amounts
of information, and, even if truncated, their resolution can be
adaptively varied (Balcazar, Gavalda, & Siegelmann, 1997). This
mismatch cannot be offset by creating neural nets that merely
mimic the heterogeneity of human neurons and the topology of
brain networks to test for relationships between structure and
function “one at a time,” even if we model a single neuron by a
deep neural net (Beniaguev, Segev, & London, 2021): There is a
degree of freedom (weight quantization) that is missing from
the model. Moreover, DNNs work in discrete and fixed time
steps and do not therefore adequately replicate the fluidly adaptive
time constants of real neurological assemblies. And, the smooth-
ing nonlinearities artificially introduced in neural networks to sat-
isfy regularity and convergence properties are introduced ad hoc,
to optimize for the properties of an output, rather than allowed to
emerge and evolve as a function of time.

So, if by “understanding” we mean that explanantia need to be
emulated by the explananda, then we need to engineer building
blocks for deep neural networks that heed the continuity and
adaptive informational breadth of neurological networks. One
example is the design of liquid time constant networks (Hasani,
Lechner, Amini, Rus, & Grosu, 2020), built from assemblies of
linear, first-order dynamical systems connected by nonlinear
gates, which embody dynamical systems with variable (“liquid”)
time constants, and achieve higher levels of expressiveness
(while maintaining stability) than do their counterparts with
fixed time steps and hard-wired nonlinearities. One can alterna-
tively seek to relax the constraint on quantization or resolution
for the weights of a neural network (Jia, Lam, & Althoefer,
2022) to more closely resemble the features of their cortical
counterparts.

Explanation as means to prediction and production: The “invis-
ible hand approach”. On the contrary, we can take the view that all
and only what “understanding” an entity means is predicting and
producing the behaviors it exhibits. This is the approach deep neu-
ral net designers have taken, at the cost of abstracting away well-
defined tasks such as object classification and time series predic-
tion from the panoply of human capabilities, to engineer simple
reward functions. Plausibly, this simplificatory approach to neural
net engineering has contributed to the divergence of the fields of
visual neuroscience and automatic pattern recognition and image
classification that Bowers et al. point to. It is, then, unsurprising
that deep neural networks currently in use do not replicate
human functions such as combinatorial generation of the

“possible ways an object can look when turned” and the parsing
of two-dimensional (2D) scenes for depth reconstruction and
whole-part decomposition: Learning to perform these tasks
requires different – and often more complicated – reward func-
tions, that track the multiplicity of ways in which a human uses
vision in the wild and the multiplicity of goals one might have
when “looking.” Introducing a human in the training loop of a
machine is equivalent to creating rewards that encode the com-
plex credit assignment map of a task (designing successful com-
municative acts) without having to specify, ex ante, why or how
that complexity arises. Tellingly, the recent advances in the per-
formance of large language models (e.g., GPT2 to GPT3.5 via
InstructGPT) are traceable not only to the increase in the param-
eter space of the new models, but, more importantly, to the use
“human-in-the-loop” reinforcement learning (Ouyang et al.,
2022) that incorporates feedback from untrained humans that
do not “understand the underlying model” but answer questions
(e.g., “Helpful? Honest? Harmless?”) in ways that help fine tune it
in accordance with a set of human preferences over sequences of
acts that induce a multi-dimensional objective function (“what is
a successful communicative act?”) which the raters may also not
fully understand. One does not have to “know what one is
doing” to sufficiently “understand” an environment from sparse
inputs provided by people who also do not explicitly “know
what they are doing” to provide them.
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Abstract

Deep neural networks (DNNs) provide a unique opportunity to
move towards a generic modelling framework in psychology.
The high representational capacity of these models combined
with the possibility for further extensions has already allowed
us to investigate the forest, namely the complex landscape of rep-
resentations and processes that underlie human cognition, with-
out forgetting about the trees, which include individual
psychological phenomena.

Bowers et al. challenge the notion that deep neural networks
(DNNs) are the best or even a highly promising model of
human cognition and recommend that future studies should
test specific psychological neural phenomena and potential
hypotheses by independently manipulating factors.

We agree with Bowers et al. that overall predictive power is
not sufficient to have a good model, in particular not when
experiments are lacking in diversity of tested stimuli
(Grootswagers & Robinson, 2021). Nevertheless, prediction is
a necessary condition and a good starting point. DNNs have
the power to serve as a generic model, and at the same time
they can be tested on a variety of cognitive/psychological phe-
nomena to go beyond prediction and give insight to understand
the functioning of a system. Strikingly, and in contrast to how
the literature is characterized by Bowers et al., the first wave of
studies comparing DNNs to human vision already included
studies that went beyond mere prediction on generic stimulus
sets. To just take one example, the study by Kubilius, Bracci,
and Op de Beeck (2016) that is characterized as a prediction-
based experiment by Bowers et al., tested a specific cognitive
hypothesis (the role of nonaccidental properties, see
Biederman, 1987) and independentlymanipulated shape and cat-
egory similarity (Kubilius et al., 2016; see also Bracci & Op de
Beeck, 2016; Zeman, Ritchie, Bracci, & Op de Beeck, 2020).
More in general, the goal of explanation over prediction is already
a central one as shown by examples of recent work testing
underlying mechanisms of object perception (Singer, Seeliger,
Kietzmann, & Hebart, 2022), category domains (Dobs,
Martinez, Kell, & Kanwisher, 2022), or predictive coding (Ali,
Ahmad, de Groot, van Gerven, & Kietzmann, 2022), just to men-
tion a few. The wealth of data that the community has gathered
with DNNs in less than a decade illustrates the potential of this
approach.

Bowers et al. provide many examples of failures of DNNs, on
the side admitting some of the successes and progress. Many of
the failures show that vanilla DNNs, as is true for all models,
are not perfect and do not capture all aspects of brain processing.
Revealing such limitations is generally considered essential to
move the field forward towards making DNN computations more
human-like (Firestone, 2020), and is no reason to abandon these
models as long as there is an obvious road ahead with them. Some
proposed examples are the addition of optical limitations reminis-
cent of the human eye that can make a network more robust to
adversarial attacks (Elsayed et al., 2018), the implementationof intu-
itive physics (Piloto, Weinstein, Battaglia, & Botvinick, 2022), or
considerations about the influence of visual system maturation
and low visual acuity at birth (Avberšek, Zeman, & Op de Beeck,
2021; Jinsi, Henderson, & Tarr, 2023).

It is difficult to reconcile a fundamental criticism of DNNs that
they do not capture all psychological phenomena without further
extensions, with the proposal of Bower et al to switch to alterna-
tive strategies that are much more limited in terms of the extent to
which they capture the full complexity of information processing
from input to output (e.g., Grossberg, 1987; Hummel &
Biederman, 1992; McClelland, Rumelhart, & PDP Research
Group, 1986, Psych Rev). These alternative models are very
appealing but also more narrow in scope. Consider, for example,
the simplicity with which the well-known ALCOVE model
explains categorization (Kruschke, 1992), compared to the com-
plex high-dimensional space that is the actual reality of the under-
lying representations (for a review, see Bracci & Op de Beeck,
2023). Note that we consider these alternatives to be an excellent
way to obtain a conceptual understanding of a phenomenon, we
all very much build on top of this pioneering work using concep-
tually elegant models with few parameters (e.g., Ritchie & Op de
Beeck, 2019). Nevertheless, scientists should not stop there. If we
would, then we would be left with a wide range of niche solutions
and no progress towards either a generic model that can be
applied across domains, or at least a path towards it. Luckily,
this path looks very promising for DNNs, given that there is a
large community of relatively junior scientists that is ready to
make progress (e.g., Doerig et al., 2023; Naselaris et al., 2018).
The necessary modifications will move the needle in various
directions, such as elaborations in terms of front-ends, architec-
ture, learning and optimization rules, learning regime, level of
neural detail (e.g., spiking networks), the addition of attentional
and working memory processes, and potentially the interaction
with symbolic processing. None of that will lead to the dismissal
of DNNs.

We see the high capacity of DNNs as a feature, not a bug,
and currently we are still on the part of the curve where higher
capacity means better (Elmoznino & Bonner, 2022). In contrast
to the alternatives, DNNs confront us upfront with the com-
plexity of human information processing because they have
to work vis-à-vis an actual stimulus as an input. This is not
just a faits divers, it is a necessary condition for the ideal
model. DNNs and related artificial intelligence (AI) models
seem to be able to stand up to this challenge, even up to the
point that in some domains they can already predict empirical
data about neural selectivity to real images to a greater extent
than professors in cognitive neuroscience (Ratan Murty,
Bashivan, Abate, DiCarlo, & Kanwisher, 2021). The general
applicability of these models and the legacy of knowledge
that has by now been obtained provides a unique resource to
test a wide variety of psychological and neural phenomena
(e.g., Duyck, Bracci, & Op de Beeck, 2022; Kanwisher, Gupta,
& Dobs, 2023).

The way forward is to build better models, including
DNN-based models that take the complexity of human vision
and cognition seriously (Bracci & Op de Beeck, 2023). As it
has been since the very early days of AI, we need continuous
interaction and exchange between disciplines and their exper-
tise at all levels (cognitive and computational psychologists,
computer vision scientists, philosophers of the mind, neuro-
scientists) to bring us towards a common goal of a human-
like AI that we understand mechanistically. Solving the deep
problem of understanding biological vision will not happen
by too easily dismissing DNNs and missing out on their
potential.
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Abstract

Bowers et al. focus their criticisms on research that compares
behavioral and brain data from the ventral stream with a class
of deep neural networks for object recognition. While they are
right to identify issues with current benchmarking research pro-
grams, they overlook a much more fundamental limitation of
this literature: Disregarding the importance of action and inter-
action for perception.

Computationally, perception, cognition, and action are insepara-
bly intertwined in sequential, goal-directed behavior (Kessler,
Frankenstein, & Rothkopf, 2022). However, the branch of research
considered in Bowers et al. focuses on a single visual task, that of
assigning single, discrete labels of object identity to images. This is
as if the whole goal of human vision was to learn to shout out an
appropriate word while being presented a random pile of photo-
graphs. But, in the words of Thomas H. Huxley, the nineteenth-
century English biologist and anthropologist: “The great end of
life is not knowledge but action.” Perception is not l’art-pour-l’art.
Instead, it occurs continuously in space and time as we perform
structured tasks in a complex and dynamic environment
(Fiehler & Karimpur, 2023). Perception guides action and action,
in turn, impacts perception (Bremmer, Churan, & Lappe, 2017;
Bremmer & Krekelberg, 2003; Eckmann, Klimmasch, Shi, &
Triesch, 2020; Fiehler, Brenner, & Spering, 2019). Without action,
we could not make changes in the world or interact with others.
Here we argue that many of the limitations of current deep neural
networks (DNNs) pointed out by Bowers et al. are likely rooted in
a flawed and limited framing of perception and implausible super-
vised learning objectives, that recent DNNs represent fruitful ave-
nues for overcoming some of these limitations, but that we must
extend current models to account for the different functions of
vision: Perception, cognition, and action and how they interact.
Acknowledging that perception and action are intimately related
has fundamental consequences. Here we highlight five key
consequences.
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The sensory input to biological visual systems is highly struc-
tured as it unfolds during goal-directed behavior. Accordingly,
DNNs should be trained not on independent images presented
in random order with corresponding labels, but in self-
supervised ways by observing continuous, structured datasets,
that is, events unfolding in space and time. Many real-world
objects, such as animals or faces, are not just static entities,
but move dynamically and nonrigidly (Dobs, Bülthoff, &
Schultz, 2018). One potential avenue currently being explored
is using forms of time-based self-supervised deep learning
(Orhan, Gupta, & Lake, 2020; Schneider, Xu, Ernst, Yu, &
Triesch, 2021; Zhuang et al., 2021), which form invariant object
representations by mapping sequences of views onto close-by
latent representations without the need for labels. These models
also have the potential to capture dynamic aspects of object rec-
ognition, such as the perception of dynamic faces, which cannot
be captured well by current models trained on static images
(Jiahui et al., 2022).

The structure of sensory input is in large part dependent on
the observer’s own actions. Thus, object perception and vision
in general can only be understood in the context of an active,
exploratory, multi-sensory observer, a view also reflected in cur-
rent experimental work (Ayzenberg & Behrmann, 2023).
Supervised approaches miss the impact of goal-directed action
and interaction on structuring visual representations (Krakauer,
Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017).
Accordingly, models should learn in self-supervised ways while
interacting with their environment. Indeed, visual representations
have been shown to be dependent on the active visual policy
(Rothkopf, Weisswange, & Triesch, 2009). Going beyond pure
self-supervised invariance learning, a recent approach considers
the benefits of active control of the view point for learning object
representations (Xu & Triesch, 2023). Mimicking visual input
from self-generated object manipulations, it learns a hierarchical
representation to satisfy the two complementary desiderata of
being partly invariant to viewpoint changes while at the same
time permitting to predict which action is responsible for a par-
ticular change in the representation.

Learning and adaptation must be a continuous process, not
limited to discrete training and test phases, but occurring contin-
ually during extended interactions with the environment. Recent
approaches involving DNNs have addressed the challenge of con-
tinual learning (Wang, Liu, Duan, Kong, & Tao, 2022). However,
the breadth of the required continuous adaptation to changing
conditions (Roelfsema & Holtmaat, 2018; Schmitt et al., 2021)
and the delicate balance of the classic stability–plasticity dilemma
are still open problems for current DNNs.

The learning objectives must permit rich and adaptive repre-
sentations that can feed multiple forms of interacting with the
world. Instead, many of the studies considered by Bowers et al.
relate to the single task of object recognition simply because the
vast majority of current DNN approaches to vision select a task
that gets away with ignoring actions: Attaching labels to images.
Few current NN models conceptualize visual tasks in terms of
visual routines, with some exceptions applying the framework
of reinforcement learning to sequential visual behaviors
(Araslanov, Rothkopf, & Roth, 2019). Promising directions are
to jointly investigate a broad range of visual tasks (Dwivedi,
Bonner, Cichy, & Roig, 2021) and to investigate those computa-
tional visual tasks relevant for action, which are predominantly
attributed to the dorsal stream, and considering ecologically rele-
vant cost functions that can account for dorsal stream properties

in the primate brain (Mineault, Bakhtiari, Richards, & Pack,
2021).

Models will need to properly compute the interactions of sen-
sory uncertainties, internally model uncertain beliefs, and the
action variabilities to successfully achieve the organism’s goals
in sequential, adaptive behavior. Bowers et al. do not mention
uncertainty once in their article. Current DNN models are not
well suited to the computations required for proper belief propa-
gation in sequential perception and action under uncertainty as
required in extended behavior, where they are inseparably inter-
twined. As an example, humans use their perception and their
actions actively to shape their internal beliefs about landmarks
in navigation (Kessler et al., 2022). In their critique, Bowers
et al. ignore the major computational challenge, which requires
making accurate causal inferences about the origins of uncertainty
in sensory data and adaptive motor output (Straub & Rothkopf,
2022).

In conclusion, we agree with Bowers et al.’s critique, but if we
want to fully understand human vision including object recogni-
tion, our models must embrace the fact that vision is intimately
intertwined with action in behaving, goal-directed agents.
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Abstract

Deep neural network (DNN) models of human-like vision are
typically built by feeding blank slate DNN visual images as train-
ing data. However, the literature on human perception and per-
ceptual learning suggests that developing DNNs that truly model
human vision requires a shift in approach in which perception is
not treated as a largely bottom-up process, but as an active, top-
down-guided process.

Bowers et al. do the field a service with their thought-provoking
commentary. If the problems currently characterizing deep neural
network (DNN) models of human vision laid out in the target
article are not adequately addressed, the field risks another winter.
Bowers et al. sketch one important way forward: Building DNNs
that can account for psychological data. I put forward that devel-
oping DNNs of human vision will foremost require a conceptual
shift: From approaching perception as the outcome of a largely
stimulus-driven process of feature detection and object recogni-
tion to treating perception as an active, top-down-guided process.

Building on the traditional notion of perception as a largely
bottom-up process, mainstream computational cognitive neuro-
science currently embraces the idea that simply feeding blank
slate DNNs large amounts of training data will produce human-
like vision. Yet, as Bowers et al.’s overview shows, this may not
yet be the case. Based on the literature on human perceptual
learning and action-oriented theories of perception, I contend
that this may be a direct result from the manner in which
DNNs are typically trained to “perceive”: In a passive, data-driven
manner. This approach typically does not induce perceptual
learning that generalizes to new stimuli or tasks in humans (Lu

& Dosher, 2022), is very different from how babies learn to per-
ceive (Emberson, 2017; Zaadnoordijk, Besold, & Cusack, 2022),
and does not take into account the action-oriented nature of per-
ception (Friston, 2009; Gibson, 2014; Hurley, 2001).

The most consistent finding in the literature on visual percep-
tual learning in human adults is that learning is highly specific to
the trained stimuli and tasks (Lu & Dosher, 2022). For example,
improvements are often not observed if the test stimulus has a dif-
ferent orientation or contrast than the trained stimulus or when
the trained stimulus is relocated or rotated (Fahle, 2004;
Fiorentini & Berardi, 1980). These findings indicate that the typ-
ical outside-in approach used in perceptual learning studies in
which participants are presented with stimuli to detect or catego-
rize tends to induce learning at too low levels in the processing
hierarchy to support feature-, stimulus-, or view-independent
learning. Indeed, more recent research suggests that transfer
learning can be enhanced when learning can be top-down guided
and connect to higher levels in the processing hierarchy (Tan,
Wang, Sasaki, & Watanabe, 2019). For example, when the training
procedure allowed for more abstract rule formation, complete
transfer of learning between physically different stimuli was
observed (Wang et al., 2016). These observations fit with recent
findings that perceptual learning involves higher cognitive areas
(Shibata, Sagi, & Watanabe, 2014; Zhang et al., 2010) and propos-
als that perceptual learning is a top-down-guided process (Ahissar
& Hochstein, 2004). Perceptual development in infants is also
more top-down guided than traditionally assumed (Emberson,
2017) and perception continues to develop through childhood
based on acquired knowledge across a range of tasks (Milne
et al., 2022). Yet the building of models of human vision still typ-
ically starts from the notion that human-like vision will simply
arise by feeding blank slate DNNs many supervised training
images, which may cause learning at too low levels in the process-
ing hierarchy. Indeed, as Bowers et al. summarize, DNNs can be
fooled by additive noise (Heaven, 2019), have difficulty generaliz-
ing learning to novel objects, and do not form transformation-
tolerant object identity representations at higher layers (Xu &
Vaziri-Pashkam, 2021). These problems conceivably reflect insuf-
ficient top-down-guided learning.

Research also shows that perception and action are interdepen-
dent processes, in particular during the development of percep-
tion (Zaadnoordijk et al., 2022). For example, kittens that are
passively moved around, do not develop depth perception (Held
& Hein, 1963), just like DNN’s that are fed visual input do not
perceive depth (Jacob, Pramod, Katti, & Arun, 2021). Humans
are not passive perceivers, but continuously build on past experi-
ences to actively predict and generate their own sensory informa-
tion through action, thereby top-down driving their own learning
(Boonstra & Slagter, 2019; Buzsáki, 2019; Friston, 2009; Gibson,
1988). That perception incorporates expectations about the sen-
sory outcome of actions is demonstrated by the fact that humans
who wear goggles that flip the visual field from left to right, do not
perceive a normal world (albeit flipped left-right), but experience
distorted perception (Kohler, 1963), caused by the disruption of
normal sensorimotor contingencies. Moreover, recent studies
show that responses in early visual cortex also reflect actions
(Schneider, 2020). These findings cannot easily be explained by
the classical view of the brain as processing information serially
from sensory to cognitive to motor control stages (Hurley,
2001), each subserved by distinct brain regions – a view that cur-
rently still drives much of DNN research. Rather, they indicate
that perception emerges from dynamic feedback relations between
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input and output, and does not merely entail the encoding of
environmental statistics, but also the statistics of agent–environ-
ment interactions (Friston, 2010). Yet DNNs are generally trained
in a passive way. This may cause shortcut learning or DNNs to
latch onto features that do not matter to humans in categorizing
objects. DNNs may focus on texture (Geirhos et al., 2022) or local
rather than global shape (Baker, Lu, Erlikhman, & Kellman,
2018), because they never had to interact with objects, for
which global shape knowledge is important. Notably, the develop-
ment of global shape representations may depend on the dorsal
stream (Ayzenberg & Behrmann, 2022).

To develop models of human-like vision, the field thus needs
to turn the notion of perception on its head: From bottom-up
driven to top-down guided and fundamentally serving agent–
environment interactions. Important steps are already taken in
this direction. For example, DNN architectures wired to top-down
infer their sensory input has been shown to work at scale
(Millidge, Salvatori, Song, Bogacz, & Lukasiewicz, 2022). There
are also exciting developments in robotics, in which artificial sys-
tems equipped with the possibility to predict and generate their
sensory information through action can top-down drive their
own learning (Lanillos et al., 2021). DNNs have the potential to
provide powerful ways to study the human brain and behavior,
but this will require the incorporation of biologically realistic,
action-oriented learning algorithms, grounding vision on interac-
tions with the environment.
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Abstract

Bowers et al. eloquently describe issues with current deep neural
network (DNN) models of vision, claiming that there are deficits
both with the methods of assessment, and with the models
themselves. I am in agreement with both these claims, but pro-
pose a different recipe to the one outlined in the target article for
overcoming these issues.

The target article proposes that deep neural networks (DNNs) be
assessed using controlled experiments that evaluate changes in
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model behaviour as all but one variable is kept constant. Such
experiments might provide information about the similarities and
differences between brains and DNNs, and hence, spur develop-
ment of DNNs better able to model the biological visual system.
However, in reality work in deep learning is concerned with devel-
oping methods that work, irrespective of the biological plausibility
of those methods: Deep learning is an engineering endeavour
driven by the desire to produce DNNs that perform the “best.”
Even in the subdomain where brain-like behaviour is a consider-
ation (Schrimpf et al., 2020) the desire is to produce DNNs that
produce the best performance. Hence, if controlled experiments
were introduced, the results would almost certainly be summarised
by a single value so that the performance of competing models
could be ranked, and as a consequence there would be little to dis-
tinguish these new experimental methods from current ones.

What is meant by “best” performance, and how is it assessed,
is the key issue. While training samples and supervision play a
role in deep learning analogous to nurture during brain develop-
ment, assessment plays a role analogous to that of evolution:
Determining which DNNs are seen as successful, and hence,
which will become the basis for future research efforts. The eval-
uation methods accepted as standard by a research community
thus have a huge influence on progress in that field. Different
evaluation methods might be adopted by different fields, for
example classification accuracy on unseen test data might be
accepted in computer vision, while Brain-Score or the sort of con-
trolled experiments advocated by the target article might be used
to evaluate models of biological vision. However, as is compre-
hensively catalogued in the target article, current DNNs suffer
from such a range of severe defects that they are clearly inade-
quate either as models of vision or as reliable methods for com-
puter vision. Both research agendas would, therefore, benefit
from more rigorous and comprehensive evaluation methods
that can adequately gauge progress.

Given the gross deficits of current DNNs, it seems premature
to assess them in fine detail against psychological and neurobio-
logical data. Rather, their performance should be evaluated by
testing the ability to generalise to changes in viewing conditions
(Hendrycks & Dietterich, 2019; Michaelis et al., 2019; Mu &
Gilmer, 2019; Shen et al., 2021), the ability to reject samples
from categories that were not seen during training (Hendrycks
& Gimpel, 2017; Vaze, Han, Vedaldi, & Zisserman, 2022), the
ability to reject exemplars that are unlike images of any object
(Kumano, Kera, & Yamasaki, 2022; Nguyen, Yosinski, & Clune,
2015), and robustness to adversarial attacks (Biggio & Roli,
2018; Croce & Hein, 2020; Szegedy et al., 2014).

Methods already exist for testing generalisation and robustness
of this type; the problem is that they are not routinely used, or that
models are assessed using one benchmark but not others. The lat-
ter is particularly problematic, as there are likely to be trade-offs
between performance on different tasks. The trade-off between
adversarial robustness and clean accuracy is well known
(Tsipras, Santurkar, Engstrom, Turner, & Madry, 2019), but oth-
ers are also likely to exist. For example, improving the ability to
reject unknown classes is likely to reduce performance on classi-
fying novel samples from known classes, as such exemplars are
more likely to be incorrectly seen as unknown. Hence, efforts to
develop a model that is less deficient in one respect, may be
entirely wasted as the resulting model may be more deficient in
another respect. Only when the community routinely requires
comprehensive evaluation of models for generalisation and
robustness will progress be made in reducing the range of deficits

exhibited by models. Once such progress has been made it will be
necessary to expand the range of assessments performed in order
to effectively distinguish the performance of competing models
and to spur further progress to address other deficiencies. The
range of assessments might eventually be expanded to include
neurophysiological and psychophysical tests.

The assessment regime advocated here can only be applied to
models that are capable of processing images, and hence, would not
be applicable to many models proposed in the psychology and neu-
roscience literatures. The target article advocates expanding assess-
ment methods to allow such models to be evaluated and compared
to DNNs. However, the ability to process images would seem to me
to be a minimum requirement for a model of vision, and models
that cannot be scaled to deal with images are not worth evaluating.

To perform well in terms of generalisation and robustness it
seems likely that DNNs will require new mechanisms. As
Bowers et al. say, it is unclear if suitable mechanisms can be learnt
purely from the data. Indeed, even a model trained on 400 million
images fails to generalise well (Radford et al., 2021). The target
article also points out that biological visual systems do not need
to learn many abilities (such as adversarial robustness, tolerance
to viewpoint, etc.), and instead these abilities seem to be
“built-in.” Brains contain many inductive biases: The nature
side of the nature–nurture cooperation that underlies brain devel-
opment. These biases underlie innate abilities and behaviours
(Malhotra, Dujmović, & Bowers, 2022; Zador, 2019) and con-
strain and guide learning (Johnson, 1999; Zaadnoordijk, Besold,
& Cusack, 2022). Hence, as advocated in the target article, and else-
where (Hassabis, Kumaran, Summerfield, & Botvinick, 2017;
Malhotra, Evans, & Bowers, 2020; Zador, 2019), biological insights
can potentially inspire new mechanisms that will improve deep
learning. However, work in deep learning does not need to be
restricted to only considering inductive biases that are biologically
inspired, especially as there are currently no suggestions as to
how to implement many potentially useful mechanisms which
humans appear to use. Indeed, if better models of biological vision
are to be developed it is essential that work in neuroscience and
psychology contribute useful insights. Unfortunately, the vast
majority of such work so far has concentrated on cataloguing
“where” and “when” events happen (where an event might be a
physical action, neural spiking, fMRI activity, etc.). Such informa-
tion is of no use to modellers who need information about
“how” and “why.”

Financial support. This research received no specific grant from any fund-
ing agency, commercial, or not-for-profit sectors.

Competing interest. None.

References

Biggio, B., & Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84, 317–331. doi:10.1016/j.patcog.2018.07.023

Croce, F., & Hein, M. (2020). Reliable evaluation of adversarial robustness with an ensem-
ble of diverse parameter-free attacks. In H. Daumé III & A. Singh (Eds.), Proceedings
of the international conference on machine learning, volume 119 of Proceedings of
machine learning research (pp. 2206–2216). arXiv:2003.01690.

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired
artificial intelligence. Neuron, 95, 245–258. doi:10.1016/j.neuron.2017.06.011

Hendrycks, D., & Dietterich, T. G. (2019). Benchmarking neural network robustness to
common corruptions and perturbations. In Proceedings of the international conference
on learning representations, New Orleans, USA. arXiv:1903.12261.

Hendrycks, D., & Gimpel, K. (2017). A baseline for detecting misclassified and
out-of-distribution examples in neural networks. In Proceedings of the international
conference on Learning representations, Toulon, France. arXiv:1610.02136.

Commentary/Bowers et al.: Deep problems with neural network models of human vision 57

https://doi.org/10.1017/S0140525X22002813 Published online by Cambridge University Press

https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.1017/S0140525X22002813


Johnson, M. H. (1999). Ontogenetic constraints on neural and behavioral plasticity:
Evidence from imprinting and face recognition. Canadian Journal of Experimental
Psychology, 53, 77–90.

Kumano, S., Kera, H., & Yamasaki, T. (2022). Are DNNs fooled by extremely unrecogniz-
able images? arXiv, arXiv:2012.03843.

Malhotra, G., Dujmović, M., & Bowers, J. S. (2022). Feature blindness: A challenge for
understanding and modelling visual object recognition. PLoS Computational
Biology, 18(5), e1009572. doi:10.1371/journal.pcbi.1009572

Malhotra, G., Evans, B. D., & Bowers, J. S. (2020). Hiding a plane with a pixel: Examining
shape-bias in CNNs and the benefit of building in biological constraints. Vision
Research, 174, 57–68. doi:10.1016/j.visres.2020.04.013

Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A. S.,… Brendel,
W. (2019). Benchmarking robustness in object detection: Autonomous driving when
winter is coming. arXiv, arXiv:1907.07484.

Mu, N., & Gilmer, J. (2019). MNIST-C: A robustness benchmark for computer vision.
arXiv, arXiv:1906.02337.

Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. arXiv, arXiv:1412.1897.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., … Sutskever, I.
(2021). Learning transferable visual models from natural language supervision.
arXiv, arXiv:2103.00020. https://proceedings.mlr.press/v139/radford21a.html

Schrimpf, M., Kubilius, J., Lee, M. J., Murty, N. A. R., Ajemian, R., & DiCarlo, J. J. (2020).
Integrative benchmarking to advance neurally mechanistic models of human intelligence.
Neuron, 108(3), 413–423 https://www.cell.com/neuron/fulltext/S0896-6273(20)30605-X

Shen, Z., Liu, J., He, Y., Zhang, X., Xu, R., Yu, H., & Cui, P. (2021). Towards
out-of-distribution generalization: A survey. arXiv, arXiv:2108.13624.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., & Fergus, R.
(2014). Intriguing properties of neural networks. In Proceedings of the international
conference on learning representations, Banff, Canada. arXiv:1312.6199.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., & Madry, A. (2019). Robustness may
be at odds with accuracy. In Proceedings of the international conference on learning
representations, New Orleans, USA. arXiv:1805.12152.

Vaze, S., Han, K., Vedaldi, A., & Zisserman, A. (2022). Open-set recognition: A good
closed-set classifier is all you need? In Proceedings of the international conference on
learning representations, Virtual. arXiv:2110.06207.

Zaadnoordijk, L., Besold, T. R., & Cusack, R. (2022). Lessons from infant learning for
unsupervised machine learning. Nature Machine Intelligence, 4, 510–520. doi:10.
1038/s42256-022-00488-2

Zador, A. M. (2019). A critique of pure learning and what artificial neural networks can learn
from animal brains. Nature Communications, 10, 3770. doi:10.1038/s41467-019-11786-6

Statistical prediction alone cannot
identify good models of behavior

Nisheeth Srivastava , Anjali Sifar

and Narayanan Srinivasan

Department of Cognitive Science, Indian Institute of Technology Kanpur,
Kalyanpur, UP, India
nsrivast@iitk.ac.in
sanjali@iitk.ac.in
nsrini@iitk.ac.in
https://www.cse.iitk.ac.in/users/nsrivast/
https://sites.google.com/site/ammuns68/

doi:10.1017/S0140525X23001784, e408

Abstract

The dissociation between statistical prediction and scientific
explanation advanced by Bowers et al. for studies of vision
using deep neural networks is also observed in several other
domains of behavior research, and is in fact unavoidable when
fitting large models such as deep nets and other supervised
learners, with weak theoretical commitments, to restricted sam-
ples of highly stochastic behavioral phenomena.

Bowers et al. show that, in the domain of visual perception, recent
deep neural network (DNN) models that have excellent predictive
performance on some types of tasks, for example, object recogni-
tion, differ from human vision in inarguable ways, for example,
being biased toward making predictions based on texture rather
than shape. We agree that deep-learning networks are fundamen-
tally limited as scientific models of vision.

Generalizing Bowers et al.’s excellent observations to
domains of behavior research other than vision, we suggest
that throwing big models at big datasets suffers from fundamen-
tal limitations while studying scientific phenomena with low
retest or inter-rater reliability (Sifar & Srivastava, 2021). In par-
ticular, large parametric models, of which supervised machine-
learning models constitute an important subset, presuppose a
deterministic mathematical relationship between stimuli and
labels, that is, when seeing features X, the model will emit a
response y. When y is stochastic, and large models are trained
using one possible instance of {X, y} observations, model predic-
tions may actually end up becoming too good to be true, in the
sense that they will offer statistically good predictions for phe-
nomena that are, based on the features seen, actually unpredict-
able (Fudenberg, Kleinberg, Liang, & Mullainathan, 2019; Sifar
& Srivastava, 2022).

Recent work has begun to quantify the notion of models
being too good to be true. Fudenberg et al. (2019) define com-
pleteness as the ratio of error reduction of a model from a naive
baseline to error reduction of the best possible model from the
same baseline, with the best possible model defined as the table
of {X, y} mappings available in the training dataset. Since unre-
liable behavior intrinsically implies that the same X can corre-
spond to more than one y, and since the model can only
predict either any one of these values or an average of them,
there will be some degree of irreducible error in even the best
possible model.

Similarly, Sifar and Srivastava (2022) measured the retest reli-
ability of economic preferences for risky choice using the classic
“decisions from description” paradigm. They note that a basic stat-
istical identity rm,s2 ≤ rs1,s2rm,s1 +

�������������������������
(1− r2s1,s2)(1 − r2m,s1)

√
lim-

its the consistency of a model m with data observed in two sessions
s1 and s2. This relationship is graphically illustrated in Figure 1,
showing that for low retest reliability, extremely high correlations
between the model and one session’s data are guaranteed to

Figure 1 (Srivastava et al.). All points below the x = y line on each of the curves indi-
cate a situation where model m is guaranteed to perform worse in predicting s2 data
when fitted to s1 data.
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produce much lower correlations between that model and the other
session’s data, even if both sessions use the same target stimuli and
protocol. Thus, the model with the best predictive accuracy when
trained with one sessions’ data is guaranteed to have poorer perfor-
mance if tested on data collected in another session from the same
participants for the same problems. Based on the measured retest
reliability of economic choices, Sifar and Srivastava (2022) suggest
that models showing a correlation greater than 0.85 to any given
dataset may not truly be capturing important psychological phe-
nomena about risky choices, but rather simply be overfit to dataset
characteristics. Interestingly, this seems to suggest that simple gen-
eralized utility models like prospect theory are already “good
enough”models of risky choice, a conclusion also reached indepen-
dently by Fudenberg et al. (2019).

Notably, prediction error as observed in retest observations of a
phenomenon cannot be controlled either by increasing model size
or dataset size, as is prominently being recommended these days
(Agrawal, Peterson & Griffiths, 2020; Peterson, Bourgin, Agrawal,
Reichman, & Griffiths, 2021; Yarkoni & Westfall, 2017). It can
only be reduced by adding more features to datasets by measuring
and characterizing more sources of variability (Sifar & Srivastava,
2022). Thus, limits to predictability based on data unreliability
imply that statistical model selection breaks down beyond a point
for even the largest models and datasets; once multiple models
can fit the data well enough, considerations other than
goodness-of-fit must differentiate them.

In many important domains of behavior, small theory-driven
models already offer predictions close to test reliability or inter-rater
agreement levels in terms of accuracy (Fudenberg et al., 2019;
Martin, Hofman, Sharma, Anderson, & Watts, 2016). For instance,
while prospect theory is already close to an ideal model in terms of
error reduction, as shown by Fudenberg et al. (2019), massive
reductions in error beyond what an ideal model would be capable
of are statistically claimed by large models fit to large datasets using
the same impoverished feature sets that prospect theory uses
(Bhatia & He, 2021; Peterson et al., 2021). The theoretical claims
of such large models, however, simply offer minor modifications
to the shape of the utility function used in prospect theory
(Peterson et al., 2021). We argue that, in contrast to statistical pre-
dictability, scientific understanding cannot be advanced simply by
fitting bigger models to bigger datasets; doing so requires fitting
better models to better datasets by identifying new features that
uncover additional sources of principled variation in the data.

In summary, we agree with Bowers et al. that deep-learning
models, while excellent in predictive terms, may not offer unalloy-
edly deep insight into scientific phenomena, a trait we propose
they share with other large statistical models with weak theoretical
commitments endemic in many studies of behavior (Cichy &
Kaiser, 2019). While the ability to search more complex function
classes rather than simpler ones for models of behavior is an
attractive proposition recently made possible by advances in
machine learning, it is important to remain aware that using
large amounts of data, with each datum generated as a restricted
sample from a highly variable phenomenon, to fit highly flexible
models runs the risk of obtaining high accuracy models of the
dataset rather than the underlying scientific phenomenon of inter-
est. Respecting fundamental limits to predictability of cognitive
behavior must necessarily foreground mechanistic plausibility,
conceptual parsimony, and consilience as criteria beyond empir-
ical risk minimization for differentiating theoretical models.
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Abstract

Bowers et al. rightly emphasise that deep learning models often
fail to capture constraints on visual perception that have been
discovered by previous research. However, the solution is not
to discard deep learning altogether, but to design stimuli and
tasks that more closely reflect the problems that biological vision
evolved to solve, such as understanding scenes and preparing
skilled action.

Norbert Wiener, the founder of cybernetics, famously wrote: “the
best […] model for a cat is another, or preferably the same cat”
(Rosenblueth & Wiener, 1945). Wiener was referencing an
assumption that good models are general – their predictions
match data across diverse settings. A model of a cat should
walk like a cat, purr like a cat, and scowl like a cat. Until recently,
vision research has lacked general models. Instead, it has focused
on unveiling a marvellous cabinet of perceptual curiosities,
including the exotic illusions that characterise human vision.
The models that explain these phenomena are typically quite nar-
row. For example, a model that explains crowding typically does
not explain filling in and vice versa.
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This (along with the vagaries of intellectual fashion) explains
the enthusiasm that has greeted deep neural networks as theories
of biological vision. Deep networks are (quite) general. After
being trained to classify objects from a well-mixed distribution
of natural scenes, they can generalise to accurately label new
exemplars of those classes in wholly novel images. To achieve
this, many networks use computational motifs recognisable
from neurobiology, such as local receptivity, dimensionality
reduction, divisive normalisation, and layerwise depth. This has
provoked an upswell of enthusiasm around a model class that is
both a passable neural simulacrum and has genuine predictive
power in the natural world.

In the target article, Bowers et al. demur. Babies, they worry,
may have been lost with the bathwater. Deep networks fail to cap-
ture many of the remarkable constraints on perception that have
been painstakingly identified by vision researchers. The target
article offers a useful tour of some behaviours we might want
deep networks to display before victory is declared. For example,
we should expect deep networks to show the advantage of
uncrowding, to benefit from Gestalt principles, and to show a pre-
dilection to recognise objects by their shape rather than merely
their texture. This point is well taken. The problem, which has
been widely noted before, is that neural networks have an exasper-
ating tendency to use every means possible to minimise their loss,
including those alien to biology. In the supervised setting, if a sin-
gle pixel unambiguously discloses the object label, deep networks
will happily use it. If trained ad nauseam on shuffled labels, they
will memorise the training set. If cows are always viewed in lush
green pastures, they will mistake any animal in a field for a cow.
None of this should be in the least surprising. It is, of course,
mandated by the principles of gradient descent which empower
learning in these networks.

So how do we build computational models that perceive the
world in more biologically plausible ways? The target article is
long on critique and short on solutions. In their concluding sec-
tions, the authors muse about the merits of a return to hand-
crafted models, or the augmentation of deep networks with
neurosymbolic approaches. This would be a regressive step.
To move away from large-scale function approximation would
be to jettison the very boon that has (rightfully) propelled
deep network models to prominence: Their remarkable
generality.

Instead, to make progress, it would help to recall that pri-
mate vision relies on two parallel streams flowing dorsally
and ventrally from early visual cortex (Mishkin, Ungerleider,
& Macko, 1983). Deep networks trained for object recognition
may offer a plausible model of the ventral stream, but an exclu-
sive reliance on this stream leads to stereotyped deficits that
seem to stem from a failure to understand how objects and
scenes are structured. For example, damage to parieto-occipital
regions can lead to integrative agnosia, where patients fail to
recognise objects by integrating their parts; or to Balint’s syn-
drome, where patients struggle to compare, count, or track mul-
tiple objects in space (Robertson, Treisman, Friedman-Hill, &
Grabowecky, 1997). These are precisely the sorts of deficits
that standard deep networks display: They fail to process the
“objectness” of an object, relying instead on shortcuts such as
mapping textures onto labels (Geirhos et al., 2020; Jagadeesh
& Gardner, 2022). In primates, this computational problem is
solved in the dorsal stream, where neurons code not just for
objects and their labels but for the substrate (egocentric
space) in which they occur. By representing space explicitly,

neural populations in dorsal stream can signal how objects
occupying different positions relate to each other (scene under-
standing), as well as encoding the spatially directed motor
responses that are required to pick an object up or apprehend
it with the gaze (skilled action). Thus, to account for the rich-
ness of primate visual perception, we need to build networks
with both “what” and “where” streams. Recent research has started
to make progress in this direction (Bakhtiari, Mineault, Lillicrap,
Pack, & Richards, 2021; Han & Sereno, 2022; Thompson,
Sheahan, & Summerfield, 2022).

More generally, the problem is not that the deep networks are
poor models of vision. The problem is that popular tests of object
recognition (such as ImageNet) are unrepresentative of the chal-
lenges that biological visual systems actually evolved to solve. In
the natural world, object recognition is not an end in itself, but
a route to scene understanding and skilled motor control. Of
course, if a network is trained to slavishly maximise its accuracy
at labelling carefully curated images of singleton objects, it will
find shortcuts to solving this task which do not necessarily resem-
ble those seen in biological organisms (which generally have other
more interesting things to do, such as walking, purring, and
scowling).

To tackle the challenges highlighted in the target article, thus,
we do not need less generality – we need more. Neuroscience
researchers should focus on the complex problems that biological
organisms actually face, rather than copying benchmark problems
from machine learning researchers (for whom building systems
that solve object recognition alone is a perfectly reasonable
goal). This will require a more serious consideration of what
other brain regions – including dorsal stream structures involved
in spatial cognition and action selection – contribute to visual
perception.
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Abstract

Pigs can’t fly. Any person buying a pig should understand this –
it would be absurd to be upset that they can’t fly or play poker.
But pigs are amazing creatures and can do many interesting and
useful things.

Since I retired to Florida, I have been a bit at loose ends. So, I got a
pet pig. I was pretty excited. On the billboard they looked real
cute, flying around on those little wings. When I picked up the
piglet they told me he would get bigger fast. Sure enough, he
ate like a pig. Named him PeteyPig, made a pen for him in the
front yard and he rolled around in the mud and ate. But he
wasn’t really that cute and he sure wasn’t flying. I thought, he’s
gotta be defective – the brochure showed pigs doing all sorts of
neat things in addition to flying: carrying golf clubs, playing
poker. So, I went down to the pig emporium (Fig. 1).

I said, “Hey you sold me a bad pig. He won’t play poker and I
am pretty sure he is never going to fly.”

The salesman stared at me, then said, “Sir, you realize that
those billboards and brochures are just to catch your eye? It’s a
pig. Pigs don’t fly.”

I wasn’t having it. I replied, “Look here, your brochure shows
poker-playing pigs, what does that mean? Petey just wallows in
the mud and expects me to feed him all the time. How is that fun?”

That salesman looked worried. “Sir, you understand that is
what pigs do? They don’t have wings and can’t play golf. That’s
just marketing.”

Nope I thought, I am not going to be taken for a fool. “Why
are you selling these pigs as pets at all? Who would want a non-
flying, fat, muddy pig? You need to fix your pigs, clean them up,
give em some wings, and teach them to play poker!”

The salesman gave me another look. “Look sir, pigs are great.
They can do amazing things. A miracle of nature. They’re playful
and smarter than dogs. But pigs will do what pigs will do.
Complain all you want, but they won’t fly. If you want a golf club-
toting poker buddy, hire someone. Flying is out.”

Well, I had heard enough. I walked straight back to the
Villages. Petey was in the front yard, covered in mud. I tossed
him some carrots and sat down. Ever hopeful, I said, “Petey old
buddy, let me show you the queen of hearts….”

Bowers et al. build a straw house by motivating their argu-
ments through quotes that are more marketing than scientific
claims. Much like our protagonist, we need to be smart consum-
ers of science. I don’t think there is much actual confusion that
deep neural networks (DNNs) are “models of the human visual
system.” Rather, like the computer vision models that preceded
DNNs, they serve as “proxy models” that surface the role(s) of
assumptions and constraints in complex systems (Leeds, Seibert,
Pyles, & Tarr, 2013).

As proxy models, DNNs are remarkable because of what
they can do in comparison with prior models. DNNs learn
task-relevant representations that are often well aligned with
representations in neural systems that support a common
task (Yamins & DiCarlo, 2016). This level of alignment is a
dramatic shift from the mostly much poorer attempts to
account for neural data that preceded DNNs. Even so, it should
be obvious that DNNs, in and of themselves, don’t have many
of the characteristics that define intelligence in biological
systems.

As a field we should have a productive discussion about what
inferences we can draw from DNNs and other computational
models (Guest & Martin, 2023). However, such discussions
should involve less hyperbole (“Deep problems…”) and less
handwringing about what current models can’t do; instead, they
should focus on what DNNs can do. They might be pigs, they
will never fly, but they can do some pretty cool stuff. We should
figure out how and why.
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Abstract

Deep neural networks (DNNs) have found many useful applica-
tions in recent years. Of particular interest have been those
instances where their successes imitate human cognition and
many consider artificial intelligences to offer a lens for under-
standing human intelligence. Here, we criticize the underlying
conflation between the predictive and explanatory power of
DNNs by examining the goals of modeling.

As is often the case with technological and computational pro-
gress, our newest and most sophisticated tools come to be seen
as models for human cognition. What perhaps began with
Gottfried Leibniz – who famously compared the mind to a mill
– has a long philosophical, and now cognitivist, tradition.
While it is natural to draw inspiration from technological progress
to advance our understanding of the mind, unsurprisingly there
are many staunch critics of the idea that the human mind should
be seen as anything like a computer, with only a difference in sub-
stance. In their target article, Bowers et al. offer a compelling
instance of this general criticism, arguing against recent attempts
to describe deep neural networks (DNNs) as the best models for
understanding human vision (or any form of biological vision).

While DNNs have admittedly been extremely successful at
classifying objects on the basis of photographs – indeed even
exceeding human levels of performance in some domains –
Bowers et al. essentially argue that they have very little explanatory
power for human vision, due to having little in common with the
mechanisms of biological vision. In order to improve our under-
standing of human vision, they instead advocate focusing more on
explaining actual psychological findings by offering testable
hypotheses.

This argument is reminiscent of many other scientific debates,
such as whether artificial neural networks constitute a good
model for the human brain more generally (Saxe, Nelli, &
Summerfield, 2021; Schaeffer, Khona, & Fiete, 2022). It also has
links to long-standing discussions in the philosophy of science
on the goals of science, between those that seek successful predic-
tions and those that seek out true explanations – a debate that is
sometimes framed as instrumentalists versus realists (see Psillos,
2005). While scientists may not frame their disagreement in
exactly these terms, their arguments may similarly be reflective
of very different attitudes toward the methodology and theoretical
assumptions of their disciplines.

Our goal here is not to argue against the view provided by
Bowers et al. Indeed, we strongly agree with their general argu-
ment that the predictive power of DNNs is insufficient to

vindicate their status as models for biological vision. Even highly
theoretical work has to make contact with empirical findings to
promote greater explanatory power of the models. Instead, our
aim here will be to take a philosophy of science perspective to
examine the goals of modeling, illuminating where the disagree-
ments between scientists in this area originate.

First, there is the concern of conflating prediction with expla-
nation. While some early philosophers of science maintained that
prediction and explanation are formally (almost) equivalent, this
view was quickly challenged (Rescher, 1958) and today is almost
universally rejected within philosophy of science. Nevertheless, in
many scientific disciplines there is still a continuous and common
conflation between the predictive power of a model and its
explanatory power. Thus, we should not be surprised at all that
many scientists have made the jump from the striking predictive
success of DNNs to the bolder claim that they are representative
models of human vision. While predictive power can certainly
constitute one piece of good evidence for one model having
greater explanatory power than another, this relationship is not
guaranteed. This is especially the case when we make extrapola-
tions from machine learning to claims about the mechanisms
behind how biological agents learn and categorize the world. As
Bowers et al. point out, the current evidence does not support
such a generalization and instead suggests there are more likely
to be dissimilar causal mechanisms underlying the observed
patterns.

Second, as philosophers of biology have argued for the last sev-
eral decades, many of the properties and abilities of biological sys-
tems can be multiply realized, that is, they can be realized through
different causal mechanisms (Ross, 2020; Sober, 1999). Thus, the
idealizations within one model may not be adequate for its appli-
cation in a different target system. Just because DNNs are the first
artificial intelligences (AIs) we have created that approximate
human levels of success in vision (or cognition) does not mean
that biological systems must be operating under the same princi-
ples. Indeed, the different origins and constraints on developing
DNNs as compared with the evolution of human vision mean
that this is even less likely to be the case.

Third, the authors’ emphasis on controlled experiments that
help us to understand mechanisms by manipulating independent
variables is an important one and one that has been a common
theme in recent work in the philosophy of science (e.g.,
Schickore, 2019). This is a very different enterprise than the
search for the best predictive models and AI researchers will ben-
efit greatly from taking note of this literature. Part of the hype
about AI systems has precisely been due to the confusion between
predictive power and explanatory causal understanding.
Prediction can be achieved through a variety of means, many of
which will not be sufficiently relevantly similar to provide a
good explanation.

We wish to finish by pointing out that the inadequacy of
DNNs for understanding biological vision is not at all an indict-
ment of their usefulness for other purposes. Science operates
under a plurality of models and these will inevitably have different
goals (Veit, 2019). It is particularly interesting that DNNs have
outperformed humans in some categorization tasks, since it sug-
gests that artificial neural networks do not have to operate in the
same ways as biological vision in order to imitate or even trump
its successes. Indeed, there is still an important explanatory ques-
tion to answer: If DNNs could constitute a superior form of visual
processing, why have biological systems evolved different ways of
categorizing the world? To answer these and related questions,
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scientists will have to seek greater collaboration and integration
with psychological and neurological research, as suggested by
Bowers et al. As we thus hope to have made clear here, this debate
would greatly benefit by further examining its underlying meth-
odological and philosophical assumptions as well as engaging
with the literature in philosophy of science where these issues
have been discussed at length.
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Abstract

Neither the hype exemplified in some exaggerated claims about
deep neural networks (DNNs), nor the gloom expressed by
Bowers et al. do DNNs as models in vision science justice:
DNNs rapidly evolve, and today’s limitations are often tomor-
row’s successes. In addition, providing explanations as well as
prediction and image-computability are model desiderata; one
should not be favoured at the expense of the other.

We agree with Bowers et al. that some of the quoted statements at
the beginning of their target article about deep neural networks
(DNNs) as “best models” are exaggerated – perhaps some of
them bordering on scientific hype (Intemann, 2020). However,
only the authors of such exaggerated statements are to blame,
not DNNs: Instead of blaming DNNs, perhaps Bowers et al.

should have engaged in a critical discussion of the increasingly
widespread practice of rewarding impact and boldness over care-
fulness and modesty that allows hyperbole to flourish in science.
This is unfortunate as the target article does mention a number of
valid issues with DNNs in vision science and raises a number of
valid concerns. For example, we fully agree that human vision is
much more than recognising photographs of objects in scenes;
we also fully agree there are still a number of important behaviou-
ral differences between DNNs and humans even in terms of core
object recognition (DiCarlo, Zoccolan, & Rust, 2012), that is, even
when recognising photographs of objects in scenes, such as
DNNs’ adversarial susceptibility (target article, sect. 4.1.1) or reli-
ance on local rather than global features (target article, sect. 4.1.3).
However, we do not subscribe to the somewhat gloomy view of
DNNs in vision science expressed by Bowers et al. We believe
that image-computable models are essential to the future of vision
science, and DNNs are currently the most promising – albeit not
yet fully adequate – model class for core object recognition.

Importantly, any behavioural differences between DNNs and
humans can only be a snapshot in time – true as of today.
Unlike Bowers et al. we do not see any evidence that future,
novel DNN architectures, training data and regimes may not be
able to overcome at least some of the limitations mentioned in
the target article – and Bowers et al. certainly do not provide
any convincing evidence why solving such tasks is beyond
DNNs in principle, that is, forever. In just over a decade, DNNs
have come a long way from AlexNet, and we still witness tremen-
dous progress in deep learning. Until recently, DNNs lacked
robustness to image distortions; now some match or outperform
humans on many of them. DNNs made very different error pat-
terns than humans; newer models achieve at least somewhat better
consistency (Geirhos et al., 2021). DNNs used to be texture-
biased; now some are shape-biased similar to humans
(Dehghani et al., 2023). With DNNs, today’s limitations are
often tomorrow’s success stories.

Yes, current DNNs still fail on a large number of “psycholog-
ical tasks,” from (un-)crowding (Doerig, Bornet, Choung, &
Herzog, 2020) to focusing on local rather than global shape
(Baker, Lu, Erlikhman, & Kellman, 2018), from similarity judge-
ments (German & Jacobs, 2020) to combinatorial judgements
(Montero, Bowers, Costa, Ludwig, & Malhotra, 2022); further-
more, current DNNs lack (proper, human-like) sensitivity to
Gestalt principles (Biscione & Bowers, 2023). But current DNNs
in vision are typically trained to recognise static images; their fail-
ure on “psychological tasks” without (perhaps radically) different
training or different optimisation objectives does not surprise us –
just as we do not expect a traditional vision model of motion pro-
cessing to predict lightness induction or an early spatial vision
model to predict Gestalt laws, at least not without substantial
modification and fitting it to suitable data. To overcome current
DNNs’ limitations on psychological tasks we need more DNN
research inspired by vision science, not just engineering to
improve models’ overall accuracy – here we certainly agree
again with Bowers et al.

Moreover, for many of the abovementioned psychological
tasks, there simply do not exist successful traditional vision mod-
els. Why single out DNNs as failures if no successful computa-
tional model exists, at least not image-computable models?
Traditional “object recognition” models only model isolated
aspects of object recognition, and it is difficult to tell how well
they model these aspects, since only image-computable models
can actually recognise objects. Here, image-computability is far
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more than just a “nice to have” criterion since it facilitates falsifi-
ability. We think that Bowers et al.’s long list of DNN failures
should rather be taken as a list of desiderata of what future image-
computable models of human vision should explain and predict.

Although we do not know whether DNNs will be sufficient to
meet this challenge, only future research will resolve the many
open questions: Is our current approach of applying predomi-
nantly discriminative DNNs as computational models of human
vision sufficient to obtain truly successful models? Do we need
to incorporate, for example, causality (Pearl, 2009), or generative
models such as predictive coding (Rao & Ballard, 1999) or even
symbolic computations (Mao, Gan, Kohli, Tenenbaum, & Wu,
2019)? Do we need to ground learning in intuitive theories of
physics and psychology (Lake, Ullman, Tenenbaum, &
Gershman, 2017)?

Finally, it appears as if Bowers et al. argue that models should
first and foremost provide explanations, as if predictivity – which
includes but is not limited to image-computability – did not mat-
ter much. (Or observational data; successful models need to be
able to explain and predict data from hypothesis-driven experi-
ments as well as observational data.) While we agree with
Bowers et al. that in machine learning there is a tendency to
blindly chase improved benchmark numbers without seeking
understanding of underlying phenomena, we believe that both
prediction and explanation are required: An explanation without
prediction cannot be trusted, and a prediction without explana-
tion does not aid understanding. What we need is not a myopic
focus on one or the other, but to be more explicit about modelling
goals – both in the target article by Bowers et al. and in general, as
we argue in a forthcoming article (Wichmann & Geirhos, 2023).

We think that neither the hype exemplified in some exagger-
ated claims about DNNs, nor the gloom expressed by Bowers
et al. do DNNs and their application to vision science justice.
Looking forward, if we want to make progress towards modelling
and understanding human visual perception, we believe that it
will be key to move beyond both hype and gloom and carefully
explore similarities and differences between human vision and
rapidly evolving DNNs.
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Abstract

Bowers et al. bring forward critical issues in the current use of
deep neural networks (DNNs) to model primate vision. Our
own research further reveals fundamentally different algorithms
utilized by DNNs for visual processing compared to the brain. It
is time to reemphasize the value of basic vision research and put
more resources and effort on understanding the primate brain
itself.

Similarities exist between deep neural networks (DNNs) and the
primate brain in how they process visual information. This has
generated the excitement that perhaps the algorithms governing
high-level vision would “automagically” emerge in DNNs to pro-
vide us with a shortcut to understand and model primate vision.
In their detailed critiques, Bowers et al. bring forward significant
drawbacks in the current applications of DNNs to explain primate
vision. Perhaps it is time to step back and ask: Is it really a short-
cut or a distraction to use DNNs to understand the primate
vision?

Using detailed examples, Bowers et al. pointed out that per-
formance alone does not constitute as good evidence that the
same processing algorithms are utilized by both the primate
brain and DNNs. They showed that DNNs fail to account for
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a large number of findings in vision research. In our own
research, by comparing DNN responses to our previously col-
lected fMRI datasets (Vaziri-Pashkam, Taylor, & Xu, 2019;
Vaziri-Pashkam & Xu, 2019), we found that DNNs’ perfor-
mance is related to the fact that they are built following the
known architecture of the primate lower visual areas and are
trained with real-world object images. Consequently, DNNs
are successful at fully capturing the visual representational struc-
tures of lower human visual areas during the processing of real-
world images, but not those of higher human visual areas during
the processing of these images or that of artificial images at
either level of processing (Xu & Vaziri-Pashkam, 2021a). The
close brain–DNN correspondence found in earlier fMRI studies
appears to be overly optimistic by including only real-world
objects and compared to brain data with relatively lower
power. When we expanded the comparisons to a broader set
of real-world stimuli and to artificial stimuli as well as compar-
ing to brain data with a higher power, this correspondence
becomes much weaker.

Perhaps the most troubling finding from our research is that
DNNs do not form the same transformation-tolerant visual object
representations as the human brain does. Decades of neuroscience
research has shown that one of the greatest achievements of pri-
mate high-level vision is its ability to extract object identity
among changes in nonidentity features to form transformation-
tolerant object representations (DiCarlo & Cox, 2007; DiCarlo,
Zoccolan, & Rust, 2012; Tacchetti, Isik, & Poggio, 2018). This
allows us to rapidly recognize an object under different viewing
conditions. Computationally, achieving tolerance reduces the
complexity of learning by requiring fewer training examples and
improves generalization to objects and categories not included
in training (Tacchetti et al., 2018). We found that while the object
representational geometry was increasingly tolerant to changes in
nonidentity features from lower to higher human visual areas, this
was not the case in DNNs pretrained for object classification
regardless of network architecture, depth, with/without recurrent
processing, or with/without pretraining to emphasize shape pro-
cessing (Xu & Vaziri-Pashkam, 2022). By comparing DNN
responses with another existing fMRI dataset (Jeong & Xu,
2017), we further showed that while the human higher visual
areas exhibit clutter tolerance, such that fMRI responses to an
object pair can be well approximated by the average responses
to each constituent object shown alone, this was not the case in
DNNs (Mocz, Jeong, Chun, & Xu, 2023). We additionally
found that DNNs differ from the human visual areas in how
they represent object identity and nonidentity features over the
course of visual processing (Xu & Vaziri-Pashkam, 2021b).
With their vast computing power, DNNs likely associate different
instances of an object to a label without preserving the object rep-
resentational geometry across nonidentity feature changes to form
brain-like tolerance. While this is one way to achieve tolerance, it
requires a large number of training data and has a limited ability
to generalize to objects not included in the training, the two major
drawbacks associated with the current DNNs (Serre, 2019).

If DNNs use fundamentally different algorithms for visual
processing, then in what way do they provide shortcuts, rather
than distractions, to help us understand primate vision? It may
be argued that since DNNs are the current best models in produc-
ing human-like behavior, we should keep refining them using our
knowledge of the primate brain. This practice, however, relies on a
thorough understanding of the primate brain. If we could already
accomplish this, do we still need DNN modeling? As stated by

Kay (2018), given that DNNs typically contain millions or even
hundreds of millions of free parameters, even if we are successful
in duplicating the primate brain in DNNs, how does replacing one
black box (the primate brain) with another black box (a DNN)
constitute a fundamental understanding of primate vision?
Perhaps it is time to reemphasize the value of basic vision and
neuroscience research and put more effort and resources on
understanding the precise algorithms used by the primate brain
in visual processing.

While current DNNs may not provide an easy and quick short-
cut to understanding primate vision, can they still be useful? Some
have used DNNs to test our theories about the topographic
(Blauch, Behrmann, & Plaut, 2022) and anatomical organization
of the brain (Bakhtiari, Mineault, Lillicrap, Pack, & Richards,
2021) and to answer “why” brains work the way they do
(Kanwisher et al., 2023). Here again, when our theories about the
brain are not borne out in DNNs, are our theories wrong or are
DNNs just ill models in those regards? It remains to be seen if
such approaches can bring us fundamental understanding of the
brain beyond what we already know. Although DNNs may yet to
possess the explanation power we desire, they could nevertheless
serve as powerful simulation tools to aid vision research. For exam-
ple, we have recently used DNNs to fine tune our visual stimuli and
help us lay out the detailed analysis pipeline that we plan to use to
study visual processing in the human brain (e.g., Tang, Chin, Chun,
& Xu, 2022; Taylor & Xu, 2021). DNNs are likely here to stay.
Understanding their drawbacks and finding the right way to har-
ness their power will be the key for future vision research.
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Abstract

Deep neural networks (DNNs) are powerful computational
models, which generate complex, high-level representations
that were missing in previous models of human cognition. By
studying these high-level representations, psychologists can
now gain new insights into the nature and origin of human
high-level vision, which was not possible with traditional hand-
crafted models. Abandoning DNNs would be a huge oversight
for psychological sciences.

Computational modeling has long been used by psychologists to
test hypotheses about human cognition and behavior. Prior to
the recent rise of deep neural networks (DNNs), most computa-
tional models were handcrafted by scientists who determined
their parameters and features. In vision sciences, these models
were used to test hypotheses about the mechanisms that enable
human object recognition. However, these handcrafted models
used simple, engineered-designed features (e.g., Gabor wavelets),
which produced low-level representations that did not account for
human-level, view-invariant object recognition (Biederman &
Kalocsai, 1997; Turk & Pentland, 1991). The main advantage of
DNNs over these traditional models is not only that they reach
human-level performance in object recognition, but that they do
so through hierarchical processing of the visual input that generates
high-level, view-invariant visual features. These high-level features
are the “missing link” between the low-level representations of the
hand crafted models and human-level object classification. They
therefore offer psychologists an unprecedented opportunity to test
hypotheses about the origin and nature of these high-level represen-
tations, which were not available for exploration so far.

In the target article, Bowers et al. propose that psychologists
should abandon DNNs as models of human vision, because
they do not produce some of the perceptual effects that are
found in humans. However, many of the listed perceptual effects

that DNNs fail to produce are also not produced by the traditional
handcrafted computational vision models, which have been prev-
alently used to model human vision. Furthermore, although cur-
rent DNNs are primarily developed for engineering purposes (i.e.,
best performance), there are myriad of ways in which they could
and should be modified to better resemble the human mind. For
example, current DNNs that are often used to model human face
and object recognition (Khaligh-Razavi & Kriegeskorte, 2014;
O’Toole & Castillo, 2021; Yamins & DiCarlo, 2016) are trained
on static images (Cao, Shen, Xie, Parkhi, & Zisserman, 2018;
Deng et al., 2009), whereas human face and object recognition
are performed on continuous streaming of dynamic, multi-modal
information. One way that has recently been suggested to close
this gap is to train DNNs on movies that are generated by head-
mounted cameras attached to infants’ forehead (Fausey, Jayaraman,
& Smith, 2016), to better model the development of human visual
systems (Smith & Slone, 2017). Training DNNs initially on blurred
images also provided insights into the potential advantage of the
initial low acuity of infants’ vision (Vogelsang et al., 2018). Such
and many other modifications (e.g., multi-modal self-supervised
image-language training, Radford et al., 2021) in the way DNNs
are built and trained may generate perceptual effects that are
more human-like (Shoham, Grosbard, Patashnik, Cohen-Or, &
Yovel, 2022). Yet even current DNNs can advance our understand-
ing of the nature of the high-level representations that are required
for face and object recognition (Abudarham, Grosbard, & Yovel,
2021; Hill et al., 2019), which are still undefined in current neural
and cognitive models. This significant computational achievement
should not be dismissed.

Bowers et al. further claim that DNNs should be used to test
hypotheses rather than to solely make predictions. We fully agree
and further propose that psychologists are best suited to apply
this approach by utilizing the same procedures they have used for
decades to test hypotheses about the hidden representations of
the human mind. Since the early days of psychological sciences,
psychologists have developed a range of elegant experimental and
stimulus manipulations to study human vision. The same proce-
dures can now be used to explore the nature of DNNs’ high-level
hidden representations as potential models of the human mind
(Ma & Peters, 2020). For example, the face inversion effect is a
robust, extensively studied, and well-established effect in human
vision, which refers to the disproportionally large drop in perfor-
mance that humans show for upside-down compared to upright
faces (Cashon & Holt, 2015; Farah, Tanaka, & Drain, 1995; Yin,
1969). Because the low-level features extracted by, handcrafted algo-
rithms are similar for upright and inverted faces, these traditional
models do not reproduce this effect. Interestingly, a human-like
face inversion effect that is larger than an object inversion effect
is found in DNNs (Dobs, Martinez, Yuhan, & Kanwisher, 2022;
Jacob, Pramod, Katti, & Arun, 2021; Tian, Xie, Song, Hu, & Liu,
2022; Yovel, Grosbard, & Abudarham, 2023). Thus, we can now
use the same stimulus and task manipulations that were used to
study this effect in numerous human studies, to test hypotheses
about the mechanism that may underlie this perceptual effect.
Moreover, by manipulating DNNs’ training diet, we can examine
what type of experience is needed to generate this human-like per-
ceptual effect, which is impossible to test in humans where we have
no control over their perceptual experience. Such an approach has
recently been used to address a long-lasting debate in cognitive sci-
ences about the domain-specific versus the expertise hypothesis in
face recognition (Kanwisher, Gupta, & Dobs, 2023; Yovel et al.,
2023).
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It was psychologists, not engineers, who first designed these neu-
ral networks to model human intelligence (McClelland,
McNaughton, & O’Reilly, 1995; Rosenblatt, 1958; Rumelhart,
Hinton, & Williams, 1986). It took more than 60 years since the
psychologist, Frank Rosenblatt published his report about the per-
ceptron, for technology to reach its present state where these hierar-
chically structured algorithms can be used to study the complexity
of human vision. Abandoning DNNs would be a huge oversight for
cognitive scientists, who can contribute considerably to the devel-
opment of more human-like DNNs. It is therefore pertinent that
psychologists join the artificial intelligence (AI) research commu-
nity and study these models in collaboration with engineers and
computer scientists. This is a unique time in the history of cognitive
sciences, where scientists from these different disciplines have
shared interests in the same type of computational models that
can advance our understanding of human cognition. This opportu-
nity should not be missed by psychological sciences.

Financial support. This study was funded by an ISF 971/21 and Joint
NSFC-ISF 2383/18 to G. Y.

Competing interest. None.

References

Abudarham, N., Grosbard, I., & Yovel, G. (2021). Face recognition depends on specialized
mechanisms tuned to view-invariant facial features: Insights from deep neural net-
works optimized for face or object recognition. Cognitive Science, 45(9),
e13031. https://doi.org/10.1111/cogs

Biederman, I., & Kalocsai, P. (1997). Neurocomputational bases of object and face recog-
nition. Philosophical Transactions of the Royal Society B: Biological Sciences, 352(1358),
1203–1219. https://doi.org/10.1098/rstb.1997.0103

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2018). VGGFace2: A dataset
for recognising faces across pose and age. In Proceedings of the 13th IEEE international
conference on automatic face and gesture recognition, FG 2018 (pp. 67–74). https://doi.
org/10.1109/FG.2018.00020

Cashon, C. H., & Holt, N. A. (2015). Developmental origins of the face inversion effect. In
Advances in child development and behavior (1st ed., Vol. 48, pp. 117–150). Elsevier.
https://doi.org/10.1016/bs.acdb.2014.11.008

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-
scale hierarchical image database (pp. 248–255). https://doi.org/10.1109/cvprw.2009.
5206848

Dobs, K., Martinez, J., Yuhan, K., & Kanwisher, N. (2022). Behavioral signatures of face
perception emerge in deep neural networks optimized for face recognition.
Proceedings of the National Academy of Sciences, 120(32), e2220642120.

Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion effect?
Journal of Experimental Psychology: Human Perception and Performance, 21(3), 628–
634. https://doi.org/10.1037/0096-1523.21.3.628

Fausey, C. M., Jayaraman, S., & Smith, L. B. (2016). From faces to hands: Changing visual
input in the first two years. Cognition, 152, 101–107. https://doi.org/10.1016/j.
cognition.2016.03.005

Hill, M. Q., Parde, C. J., Castillo, C. D., Colón, Y. I., Ranjan, R., Chen, J.-C., … O’Toole,
A. J. (2019). Deep convolutional neural networks in the face of caricature. Nature
Machine Intelligence, 1(11), 522–529. https://doi.org/10.1038/s42256-019-0111-7

Jacob, G., Pramod, R. T., Katti, H., & Arun, S. P. (2021). Qualitative similarities and dif-
ferences in visual object representations between brains and deep networks. Nature
Communications, 12(1), 1–14. https://doi.org/10.1038/s41467-021-22078-3

Kanwisher, N., Gupta, P., & Dobs, K. (2023). CNNs reveal the computational implausi-
bility of the expertise hypothesis. iScience, 26(2), 105976. https://doi.org/10.1016/j.isci.
2023.105976

Khaligh-Razavi, S.M., &Kriegeskorte,N. (2014). Deep supervised, but not unsupervised,mod-
els may explain IT cortical representation. PLoS Computational Biology, 10(11), e1003915.

Ma, W. J., & Peters, B. (2020). A neural network walks into a lab: Towards using deep nets
as models for human behavior (pp. 1–39).

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are comple-
mentary learning systems in the hippocampus and neocortex: Insights from the suc-
cesses and failures of connectionist models of learning and memory. Psychological
Review, 102(3), 419–457. https://doi.org/10.1037/0033-295X.102.3.419

O’Toole, A. J., & Castillo, C. D. (2021). Face recognition by humans and machines: Three
fundamental advances from deep learning. Annual Review of Vision Science, 7, 543–
570. https://doi.org/10.1146/annurev-vision-093019-111701

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., … Sutskever,
I. (2021). Learning transferable visual models from natural language supervision. In
International conference on machine learning (pp. 8748–8763). PMLR.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6), 386–408.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533–536.

Shoham, A., Grosbard, I., Patashnik, O., Cohen-Or, D., & Yovel, G. (2022). Deep learning
algorithms reveal a new visual-semantic representation of familiar faces in human per-
ception and memory. Biorxiv, 2022-10.

Smith, L. B., & Slone, L. K. (2017). A developmental approach to machine learning?
Frontiers in Psychology, 8, 1–10. https://doi.org/10.3389/fpsyg.2017.02124

Tian, F., Xie, H., Song, Y., Hu, S., & Liu, J. (2022). The face inversion effect in deep con-
volutional neural networks. Frontiers in Computational Neuroscience, 16, 1–8. https://
doi.org/10.3389/fncom.2022.854218

Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 3(1), 71–86. https://doi.org/10.1162/jocn.1991.3.1.71

Vogelsang, L., Gilad-Gutnick, S., Ehrenberg, E., Yonas, A., Diamond, S., Held, R., &
Sinha, P. (2018). Potential downside of high initial visual acuity. Proceedings of the
National Academy of Sciences of the United States of America, 115(44), 11333–
11338. https://doi.org/10.1073/pnas.1800901115

Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to
understand sensory cortex. Nature Neuroscience, 19(3), 356–365. https://doi.org/10.
1038/nn.4244

Yin,R.K. (1969). Lookingat upside-down faces. Journal ofExperimentalPsychology,81(1), 141.
Yovel, G., Grosbard, I., & Abudarham, N. (2023). Deep learning models challenge the

prevailing assumption that face-like effects for objects of expertise support domain-
general mechanisms. Proceedings of the Royal Society B, 290(1998), 20230093.

Authors’ Response

Clarifying status of DNNs as models
of human vision

Jeffrey S. Bowersa , Gaurav Malhotraa,

Marin Dujmovića, Milton L. Monteroa,

Christian Tsvetkova, Valerio Biscionea,

Guillermo Pueblab, Federico Adolfic, John E. Hummeld,

Rachel F. Heatond, Benjamin D. Evanse, Jeffrey Mitchelle

and Ryan Blythingf

aSchool of Psychological Science, University of Bristol, Bristol, UK; bNational
Center for Artificial Intelligence, Macul, Chile; cErnst Strüngmann Institute (ESI)
for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main,
Germany; dPsychology Department, University of Illinois Urbana–Champaign,
Champaign, IL, USA; eDepartment of Informatics, School of Engineering and
Informatics, University of Sussex, Brighton, UK and fSchool of Psychology, Aston
University, Birmingham, UK
j.bowers@bristol.ac.uk; https://jeffbowers.blogs.bristol.ac.uk/
gaurav.malhotra@bristol.ac.uk
marin.dujmovic@bristol.ac.uk
m.lleramontero@bristol.ac.uk
christian.tsvetkov@bristol.ac.uk
valerio.biscione@gmail.com
guillermo.puebla@bristol.ac.uk
fedeadolfi@gmail.com
jehummel@illinois.edu
rmflood2@illinois.edu
b.d.evans@sussex.ac.uk
j.mitchell@napier.ac.uk
r.blything@aston.ac.uk

doi:10.1017/S0140525X23002777, e415

Response/Bowers et al.: Deep problems with neural network models of human vision 67

https://doi.org/10.1017/S0140525X22002813 Published online by Cambridge University Press

https://doi.org/10.1111/cogs
https://doi.org/10.1111/cogs
https://doi.org/10.1098/rstb.1997.0103
https://doi.org/10.1098/rstb.1997.0103
https://doi.org/10.1109/FG.2018.00020
https://doi.org/10.1109/FG.2018.00020
https://doi.org/10.1109/FG.2018.00020
https://doi.org/10.1016/bs.acdb.2014.11.008
https://doi.org/10.1016/bs.acdb.2014.11.008
https://doi.org/10.1109/cvprw.2009.5206848
https://doi.org/10.1109/cvprw.2009.5206848
https://doi.org/10.1109/cvprw.2009.5206848
https://doi.org/10.1037/0096-1523.21.3.628
https://doi.org/10.1037/0096-1523.21.3.628
https://doi.org/10.1016/j.cognition.2016.03.005
https://doi.org/10.1016/j.cognition.2016.03.005
https://doi.org/10.1016/j.cognition.2016.03.005
https://doi.org/10.1038/s42256-019-0111-7
https://doi.org/10.1038/s42256-019-0111-7
https://doi.org/10.1038/s41467-021-22078-3
https://doi.org/10.1038/s41467-021-22078-3
https://doi.org/10.1016/j.isci.2023.105976
https://doi.org/10.1016/j.isci.2023.105976
https://doi.org/10.1016/j.isci.2023.105976
https://doi.org/10.1037/0033-295X.102.3.419
https://doi.org/10.1037/0033-295X.102.3.419
https://doi.org/10.1146/annurev-vision-093019-111701
https://doi.org/10.1146/annurev-vision-093019-111701
https://doi.org/10.3389/fpsyg.2017.02124
https://doi.org/10.3389/fpsyg.2017.02124
https://doi.org/10.3389/fncom.2022.854218
https://doi.org/10.3389/fncom.2022.854218
https://doi.org/10.3389/fncom.2022.854218
https://doi.org/10.1162/jocn.1991.3.1.71
https://doi.org/10.1162/jocn.1991.3.1.71
https://doi.org/10.1073/pnas.1800901115
https://doi.org/10.1073/pnas.1800901115
https://doi.org/10.1038/nn.4244
https://doi.org/10.1038/nn.4244
https://doi.org/10.1038/nn.4244
https://orcid.org/0000-0001-9558-5010
mailto:j.bowers@bristol.ac.uk
https://jeffbowers.blogs.bristol.ac.uk/
https://jeffbowers.blogs.bristol.ac.uk/
mailto:gaurav.malhotra@bristol.ac.uk
mailto:marin.dujmovic@bristol.ac.uk
mailto:m.lleramontero@bristol.ac.uk
mailto:christian.tsvetkov@bristol.ac.uk
mailto:valerio.biscione@gmail.com
mailto:guillermo.puebla@bristol.ac.uk
mailto:fedeadolfi@gmail.com
mailto:jehummel@illinois.edu
mailto:rmflood2@illinois.edu
mailto:b.d.evans@sussex.ac.uk
mailto:j.mitchell@napier.ac.uk
mailto:r.blything@aston.ac.uk
https://doi.org/10.1017/S0140525X22002813


Abstract

On several key issues we agree with the commentators. Perhaps
most importantly, everyone seems to agree that psychology has
an important role to play in building better models of human
vision, and (most) everyone agrees (including us) that deep neural
networks (DNNs) will play an important role in modelling human
vision going forward. But there are also disagreements about what
models are for, how DNN–human correspondences should be
evaluated, the value of alternative modelling approaches, and
impact of marketing hype in the literature. In our view, these latter
issues are contributing to many unjustified claims regarding
DNN–human correspondences in vision and other domains of
cognition. We explore all these issues in this response.

R1. Overview

We are pleased that so many commentators agree with so many of
our core claims. For instance, there is general agreement that current
deep neural networks (DNNs) do a poor job in accounting for many
psychological findings; that an important direction for future
research is to train DNNs on new tasks and datasets that more
closely capture human experience; and that new objective functions
like self-supervision may improve DNN–human correspondences.
Most importantly, there is widespread agreement that research in
psychology should play a central role in building better models of
human vision. It is important to appreciate the implication of this
last point because psychological experiments reveal some weird
and wonderful properties of human vision that DNNs must seek
to explain. We start by discussing some of these key properties
before responding to the specific points of the commentators.

To give only the most cursory of overviews, the following find-
ings should play a central role in theory and model building. The
input to our visual system is degraded due to a large blind spot
and an inverted retina with light having to pass through multiple
layers of retinal neurons, axons, and blood vessels before reaching
the photoreceptors. Nevertheless, we are unaware of the degraded
signals due to a process of actively filling in missing signals in
early visual cortex (e.g., Grossberg, 2003; Ramachandran &
Gregory, 1991). We have fovea that supports high-acuity colour
vision for only about 2 degrees of visual angle (about the size of
a thumbnail at arm’s length). Nevertheless, we have the subjective
sense of a rich visual experience across a much wider visual field
because we move our eyes approximately three times per second
(Rayner, 1978), with the encoding of visual inputs suppressed
during each saccade (Matin, 1974), and the visual system some-
how integrating inputs across fixations (Irwin, 1991). At the
same time, we can identify multiple objects in scenes following
a single fixation (Biederman, 1972), with object identification tak-
ing approximately 150 ms (Thorpe, Fize, & Marlot, 1996) – too
quick to rely on recurrence. We are also blind to major changes
in a scene as revealed by change blindness (Simons & Levin,
1997) and have a visual short-term memory of approximately
four items (Cowan, 2001). Our visual system organizes image
contours by various Gestalt rules to separate figure from ground
(Wagemans et al., 2012) and organize contours to build represen-
tations of object parts (Biederman, 1987). Objects are encoded in
terms of their surfaces, parts, and relations between parts to build
three-dimensional (3D) representations relying on monocular and
binocular inputs (Biederman, 1987; Marr, 1982; Nakayama &
Shimojo, 1992). Colour, form, and motion processing are

factorized to the extent that it is possible to be cortically colour
blind (Cavanagh et al., 1998), or suffer motion blindness where
objects disappear during motion but are visible and recognizable
while static (Zeki, 1991), or show severe impairments with object
identification while maintaining the ability to reach and manipu-
late objects (Goodale & Milner, 1992). Participants can even clas-
sify objects while denying seeing them (Koculak & Wierzchoń).
Our visual system manifests a wide range of visual, size, and
shape constancies to estimate the distal properties of the world
independent of the lighting and object pose, and we suffer from
size, colour, and motion illusions that reflect the very mechanisms
that serve the building of these distal representations from the
proximal image projected onto our retinas. These representations
of distal stimuli in the world support a range of visual tasks,
including object classification, navigation, grasping, and visual
reasoning. All this is done with spiking networks composed of
neurons with a vast range of morphologies that vary in ways rel-
evant to their function, with architectures constrained by evolu-
tion and biophysics.

All of this and much more needs to be explained, and various
modelling approaches are warranted. We agree with the commen-
tators that one valuable approach is to keep working with current
image-computable DNNs while altering the tasks they solve, the
data they are fed, their objective functions, learning rules, and
architectures. Perhaps DNNs will converge with the biological
solutions in some important respects. Whether DNNs will “auto-
magically” (Xu & Vaziri-Pashkam) converge on many of these
solutions when trained on the right tasks and data, however, is
far from certain, and in our view, it is a mistake to put all our
eggs in this one basket. Whatever approach one adopts, the cur-
rent trend of emphasizing prediction success on observational
behavioural and brain benchmarks and downplaying failures is
unlikely to advance our understanding of human vision and the
brain more generally.

Our response to the commentaries is organized as follows. In
section R2 we show there is no basis for the claim that we are
advocating for the abandonment of DNNs as a modelling frame-
work to test hypotheses about human vision. In sections R3 and
R4 we challenge the common claim that image computability is
the minimal criteria for any serious model of vision and that
DNNs are the “current best” models of human vision. In section
R5 we argue that models should be developed for the sake of
explanations rather than predictions. In section R6 we discuss
how the marketing of DNNs as the best models of human vision
is contributing to a current trend of emphasizing DNN–human
similarities and downplaying discrepancies. Finally, in section
R7, we respond to the DiCarlo, Yamins, Ferguson, Fedorenko,
Bethge, Bonnen, & Schrimpf (DiCarlo et al.) and Golan,
Taylor, Schütt, Peters, Sommers, Seeliger, Doerig, Linton,
Konkle, van Gerven, Kording, Richards, Kietzmann, Lindsay,
& Kriegeskorte (Golan et al.) commentaries. Many of the (over
20) authors have played leading roles in developing this new
field comparing DNNs to humans, and in both commentaries,
the authors are advancing research agendas going forward.
However, the authors fail to address any of our concerns, and
at the same time, mischaracterize some of our key positions.

R2. Do we recommend abandoning DNNs as models of
human vision?

Many commentators claim that we are categorically rejecting
DNNs as models of human vision (Golan et al.; Hermann,
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Nayebi, van Steenkiste, & Jones [Hermann et al.]; Love & Mok;
Op de Beeck & Bracci; Summerfield & Thompson; Wichmann,
Kornblith, & Geirhos [Wichmann et al.]; Yovel & Abudarham),
with quotes like:

In the target article, Bowers et al. propose that psychologists should aban-
don DNNs as models of human vision, because they do not produce some
of the perceptual effects that are found in humans (Yovel & Abudarham)

Unlike Bowers et al. we do not see any evidence that future, novel DNN
architectures, training data and regimesmay not be able to overcome at least
some of the limitations mentioned in the target article – and Bowers et al.
certainly do not provide any convincing evidence why solving such tasks
is beyond DNNs in principle, that is, forever (Wichmann et al.)

Nevertheless, the target article advocates for jettisoning deep-learning
models with some competency in object recognition for toy models evalu-
ated against a checklist of laboratory findings (Love & Mok)

…Bowers et al. take failures of ImageNet-trained models to behave
in human-like ways as support for abandoning DNN architectures
(Hermann et al.)

However, this is not our position. Indeed, in section 6.1 in the
target article, we clearly lay out four different approaches to mod-
elling that should be pursued going forward, the first of which is
to continue to work with standard DNNs that perform well in
identifying naturalistic images of objects but modify their archi-
tectures, optimization rules, and training environments to better
account for key experimental results in psychology. This is exactly
the view that so many commentators are endorsing. Nowhere in
the target article do we advocate for “jettisoning” DNNs, and it is
hard to understand why so many researchers claim that we have.

R3. Is image computability an entry requirement for
developing models of human vision?

While we explicitly endorse a research programme that, amongst
other things, compares image-computable DNNs to human vision
(if severely tested), most of the commentators are less ecumenical
and reject alternativemodelling approaches in psychology and neu-
roscience that already account for some key aspects of human vision
and the brain more generally. The main reason for this selective
interest in DNNs is that only DNNs can recognize photographic
images of objects at human or superhuman levels (under some con-
ditions), that is, onlyDNNs are “image computable.”This is consid-
ered an essential starting point for developing models of human
vision (Anderson, Storrs, & Fleming [Anderson et al.]; DiCarlo
et al.; Golan et al.; Love & Mok; Op de Beeck & Bracci;
Spratling; Summerfield & Thompson; Wichmann et al.; Yovel
& Abudarham). As Spratling puts it “… the ability to process
images would seem to me to be a minimum requirement for a
model of vision, and models that cannot be scaled to deal with
images are not worth evaluating.” Similarly, Summerfield &
Thompson describe working with nonimage-computable models
as “regressive.” Not to be outdone, Love & Mok write:

The authors invite us to return to the halcyon days before deep learning to
a time of box-and-arrow models in cognitive psychology and “blocks
world” models of language (Winograd, 1971), when modelers could nar-
rowly apply toy models to toy problems safe in the knowledge that they
would not be called upon to generalize beyond their confines nor pave
the way for future progress.

This emphasis on image computability betrays a fundamental
misunderstanding of what models are and what they are for. The

goal of a scientific theory/model in the cognitive sciences is to
account for capacities, predict data, and explain key phenomena,
not to superficially resemble that which it purports to explain.
When developing DNNs of human vision, image computability
makes a system look like a visual system, but it does not make
that system a good model of the human visual system. The ability
to identify photorealistic images is a perk, not a barrier to entry.
The barrier to entry is explanatory power and accounting for key
empirical results. Rather than dismiss alternative approaches to
modelling because they are not image computable, the relevant
questions are “What have we learned from the multitude of mod-
elling approaches available to vision scientists?” and “What are
the most promising approaches going forward?”

To answer these questions, we need to consider the differentmod-
elling approaches of the past and the different approaches currently
on offer. First, there is a long history in neuroscience and psychology
of developing conceptual andmathematical theories of humanvision
that have provided insights into key empirical phenomena, fromwir-
ing diagrams designed to explain single-cell responses of simple and
complex cells in V1 (Hubel &Wiesel, 1962), to dual-stream theories
of vision designed to explain neuropsychological disorders of vision
(Goodale&Milner, 1992), to theories of object recognition innormal
vision (e.g., Biederman, 1987;Marr, 1982). These approaches tomod-
elling are still active and providing valuable insights (Baker,
Garrigan, & Kellman, 2021; Goodale & Milner, 2023;
Vannuscorps, Galaburda, & Caramazza, 2021).

Second, there is a long history of building neural networks that
process simple visual inputs to gain insights into the psychological
and neural processes involved in object recognition, such as the
neocognitron model (Fukushima, 1980) that implemented and
extended the theory of Hubel and Wiesel, and the JIM model
that implemented and extended the theory of Biederman
(Hummel & Biederman, 1992). This latter model, JIM, and its
successors (Hummel, 2001; Hummel & Stankiewicz, 1996) recog-
nize simple line drawings of objects and are premised on the
assumption that the goal of the ventral visual stream is to build
a representation of the distal stimulus (the world and the objects
in it) that can be used to understand the visual world. On this
view, object classification is merely a consequence, not the
be-all and end-all, of the ventral visual stream. Unlike current
DNNs, JIM, and its successors account for many key psycholog-
ical findings in human object recognition – such as the sensitivity
of humans to part–whole relations – without being able to process
naturalistic photographic images.

In a similar way, Grossberg et al. developed adaptive resonance
theory (ART) models that quickly learn to classify simple visual
patterns without forgetting past learning, that is, networks that
solve the stability–plasticity dilemma (e.g., Carpenter &
Grossberg, 1987; Grossberg, 1980). ART models not only account
for a range of empirical findings reported in psychology and neu-
roscience (Grossberg, 2021), but they have also been used to solve
engineering challenges (Da Silva, Elnabarawy, & Wunsch, 2019).
Grossberg has also developed detailed models of low-level vision
that take in simple visual inputs to capture a wide range of percep-
tual illusions (Grossberg, 2014). Expanding on the work of
Grossberg, Francis, Manassi, and Herzog (2017) implemented
networks that process simple visual inputs to explain a range of
crowding phenomena that current DNNs cannot explain. In
related work, George et al. (2017, 2020) developed recursive cor-
tical networks that support the recognition of “captchas” and can
account for several phenomena core to human vision, including
some Gestalt phenomena (Lavin, Guntupalli, Lázaro-Gredilla,
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Lehrach, & George, 2018). These models rely on segmentation
and occlusion-reasoning in a unified framework to support object
recognition, but only work with simple visual stimuli. These mod-
elling efforts (and many others) largely fall into the second
research programme we endorse in section 6.1 in the target article,
namely, building networks that focus on explaining key psycho-
logical phenomena rather than image computability.

Third, there are active research programmes following the
third approach we endorse in section 6.1 in the target article,
namely, building models that support various human capacities
that current DNNs struggle with (without focusing on the details
of psychological or neuroscience research). But again, these mod-
els cannot process the photographic images that DNNs recognize.
For example, Hinton, a coauthor of AlexNet, rejects current
image-computable DNNs as models of human vision and is
instead developing Capsule and GLOM models (Hinton, 2022;
Sabour, Frosst, & Hinton, 2017). Hinton (2022) writes:

There is strong psychological evidence that people parse visual scenes into
part–whole hierarchies and model the viewpoint–invariant spatial rela-
tionship between a part and a whole as the coordinate transformation
between intrinsic coordinate frames that they assign to the part and the
whole [Hinton, 1979]. If we want to make neural networks that under-
stand images in the same way as people do, we need to figure out how
neural networks can represent part–whole hierarchies.

Indeed, current DNNs fail to represent objects in terms of
their parts and relations even when explicitly trained to do so
(Malhotra, Dujmović, Hummel, & Bowers, in press).

Similarly, generativemodels, such as variational autoencoders, are
being developed that learn disentangled representations of visual ele-
ments of a scene (single hidden units that encode shape, colour, posi-
tion, etc.; e.g., Higgins et al., 2016; Montero, Bowers, Ponte Costa,
Ludwig, & Malhotra, 2022; Zhang et al., 2022) and object-centric
learning models are being built to perform perceptual grouping
(e.g., Anciukevicius, Fox-Roberts, Rosten, & Henderson, 2022;
Locatello et al., 2020). To understand these principles, these models
are frequently trained and tested on datasets of artificially created
simple visual stimuli. German & Jacobs explicitly argue that varia-
tional autoencoders provide amore promising framework for under-
standing how human vision encodes objects in terms of their parts
and relations between parts. But at present, exploring this requires
working with simple rather than the photorealistic images.

The important point to emphasize here is that all these models
would (and some actually do) receive low Brain-Scores (some
cannot even be tested) because they cannot process the photoreal-
istic inputs in ImageNet. Yet these models explore important phe-
nomena in constrained settings. Are we supposed to discard these
models because they cannot process and recognize photographs
of objects? We think not. In our view, the diversity of modelling
approaches in psychology (and the cognitive sciences more gener-
ally) fits well with the diversity of productive questions that can be
asked about cognitive systems (cf., van Rooij, 2022). This is
important to counteract the assumption that all worthwhile mod-
els of vision can recognize naturalistic photographs of objects or
are on a trajectory towards becoming image computable.

R4. Are image-computable models the “current best”
models of human vision

Still, it might be argued that image-computable DNNs that per-
form well on prediction-based experiments are the current best

models of human vision because they provide more insights
into human vision. However, we are struggling to see what the
new insights are (although see our responses to Anderson et al.
and Op de Beeck & Bracci below). Current DNNs account for
few findings from psychology, and only do well on brain
prediction-based studies when there is no attempt to rule out con-
founds as the basis of their successes. At the same time, DNNs
that vary in terms of their architectures (CNNs vs. transformers),
and objective functions (classification vs. image reconstruction)
support similar levels of predictions on behavioural and brain
benchmarks (e.g., Storrs, Kietzmann, Walther, Mehrer, &
Kriegeskorte, 2021), with Hermann et al. and Linsley & Serre
noting a recent trend for better performing models of object rec-
ognition doing more poorly on Brain-Score (althoughWichmann
et al. note that a transformer model trained on 4 billion images
does much better on behavioural benchmarks). And as noted
by Xu & Vaziri-Pashkam, when RSA is assessed with higher
quality brain data, the correspondence across levels of DNNs
and visual cortex is lost for familiar objects, and the predictivity
scores go down dramatically for unfamiliar objects. More prob-
lematically, Xu & Vaziri-Pashkam note that RSA scores are greatly
reduced following theoretically motivated experimental manipu-
lations of images. What conclusions or insights about human
vision follow from these observations? At present, it seems that
the main advantage of image-computable DNNs compared to
alternative models is that they recognize things, with little evi-
dence that they do this in the way that humans do.

In fact, many commentators readily concede that current
DNNs are doing a poor job in accounting for the results of exper-
imental studies of human vision, and multiple possible solutions
have been proposed. DNNs need to be trained with a better diet of
images that more closely resemble human experience (Linsley &
Serre; Op de Beeck & Bracci; Yovel & Abudarham), more bio-
logical constraints need to be added to models, such as represent-
ing binocular input from two eyes (Chandran, Paul, Paul, &
Ghosh), and new objective functions and tasks need to be
explored, including building DNNs that support vision for action
(German & Jacobs; Hermann et al.; Li & Mur; Liu &
Bartolomeo; Rothkopf, Bremmer, Fiehler, Dobs, & Triesch;
Slagter; Summerfield & Thomson), with many of these authors
advocating for some combination of the above approaches. Again,
we agree with these research agendas, and we are pursuing some
of these ourselves, including adding biological constraints to net-
works (Evans, Malhotra, & Bowers, 2022; Tsvetkov, Malhotra,
Evans, & Bowers, 2023) and modifying training environments
(Biscione & Bowers, 2022), in an attempt to make DNNs encode
information in a more human-like manner. At the same time,
there are good a priori reasons to think major architectural inno-
vations may be necessary, for example, to encode relations
between parts (Kellman, Baker, Garrigan, Phillips, & Lu),
with some authors more pessimistic regarding the promise of
DNNs as models of brains, with quotes such as: “Deep neural net-
works (DNNs) are not just inadequate models of the visual system
but are so different in their structure and functionality that they
are not even on the same playing field” (Gur) and the claim
that DNNs “are doomed to be largely useless models for psycho-
logical research on language” (Bever, Chomsky, Fong, &
Piattelli-Palmarini [Bever et al.]).

Of course, the human visual system is an image-computable
neural network (although a network that differs from current
DNNs in many fundamental ways; Izhikevich, 2004). However,
the claim that current image-computable DNNs are the most
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promising models of human vision going forward, despite the
limited insights gathered thus far, is nothing more than a faith-
based prophecy that may or may not pan out. In our view,
researchers should be pursuing multiple different modelling
approaches to advance our understanding of human vision. It is
the dismissal of alternative approaches that is regressive (cf.,
Rich, de Haan, Wareham, & van Rooij, 2021, for a computational
account of why this is detrimental).

R5. The role of prediction and explanation in model
building

In the target article, we distinguished between uncontrolled,
prediction-based studies that often highlight DNN–human simi-
larities and controlled experiments that often highlight dissimilar-
ities. We argued that the former experiments are problematic
given that predictions can be driven by confounds whereas the lat-
ter experiments can help rule out confounds and allow research-
ers to draw causal conclusions regarding similarities and
differences between DNNs and humans. To our surprise, few
commentators even comment on this issue. The only exceptions
are Srivastava, Sifar, & Srinivasan who highlight that similar
issues apply in other domains, Golan et al. who highlight the
importance of all variety of designs, and Veit & Browning who
point out that properties and abilities of biological systems can
be multiply realized and that controlled experiments are needed
to make causal conclusions regarding the similarity of DNNs
and humans.

Despite the potential problem of confounds in prediction-
based studies, several commentators emphasize the importance
of model predictions (Golan et al.; Lin; Moldoveanu; Op de
Beeck & Bracci; Veit & Browning; Wichmann et al.; Yovel &
Abudarham). For example, Wichmann et al. write: “we believe
that both prediction and explanation are required: An explanation
without prediction cannot be trusted, and a prediction without
explanation does not aid understanding,” and Lin writes “develop-
ing models with predictive accuracy might be a complementary
approach that could help to test the relevance of explanatory models
that have been developed through controlled experimentation.”

These comments seem to suggest that testing models on con-
trolled experiments does not involve prediction. In fact, both
prediction-based studies and controlled experiments test model-
based predictions (Golan et al.). The important distinction is
between predictions with and without explanation. In the case
of testing DNNs on prediction-based studies, there is no manip-
ulation of independent variables designed to test specific hypoth-
eses regarding how the models made their predictions, and
accordingly, no explanation for any good predictions. Indeed,
receiving 100% predictivity does not help the scientist understand
how a DNN is predicting (see Fig. 5 in the target article). By con-
trast, in the case of testing DNNs on controlled experiments, the
models are assessed in how well they predict performance across
conditions designed to test hypotheses, and accordingly, good
predictions can contribute to an explanation.

Of course, some types of predictions provide a stronger test of
a model than others (Spratling), and this applies to both
prediction-based studies and controlled experiments. In the case
of prediction-based studies, current DNNs only perform well in
the easy cases, namely, when training and test images are from
the same distribution (often described as independent and iden-
tically distributed data or i.i.d. data). When DNNs are assessed
on their ability to make behavioural or brain predictions for test

images from a different distribution (out-of-distribution data or
o.o.d. data), performance plummets. For example, as noted
above, Xu & Vaziri-Pashkam showed that brain predictivity
with RSA was much weaker when they included novel stimuli
in the test set, and DNN successes on same-different visual judge-
ments are limited to cases in which training and test images are
similar (Puebla & Bowers, 2022, 2023). In other words, not
only do prediction-based studies provide little insight into how
models predict, but also their successful predictions are highly
circumscribed.

Similarly, in the case of DNNs that successfully account for the
results of controlled psychological experiments, the models pre-
dict that the controlled experiments will replicate on another sam-
ple of participants, images, and so on taken from the same
population (i.i.d. data). But DNNs rarely make counterintuitive
predictions that are subsequently confirmed in controlled experi-
ments (analogous to predictions of o.o.d. data). It is worth noting
that models tested on controlled experiments are generally
described as accounting for (rather than predicting) results when
successful, and this terminology might be more appropriate for
prediction-based studies tested on i.i.d. data. Whatever the termi-
nology, prediction-based studies and controlled experiments both
assess how well DNNs predict (account) for data, but only the lat-
ter method tests hypotheses to rule out confounds and to make
causal claims regarding how DNNs and humans identify objects.

Arguments regarding the relative advantages of prediction ver-
sus explanation touch on a broader debate regarding the relative
advantages of studying natural systems in artificial conditions
that allow precise control of variables versus naturalistic condi-
tions where control is more limited. For example, Love & Mok
cite the classic paper by Newell (1973) “You can’t play 20 ques-
tions with nature and win” as a fundamental problem with study-
ing the brain with controlled experiments. According to Love &
Mok, laboratory studies in psychology have only produced a col-
lection of findings they characterize as “cognitive science trivia.”
Summerfield & Thompson are not so dismissive of these exper-
imental results, but they are critical of models in psychology that
narrowly focus on explaining a small set of laboratory findings.
DNNs, by contrast, are thought to hold promise of “genuine pre-
dictive power in the natural world” when trained on tasks that
humans face in everyday life.

It strikes us as peculiar to characterize the empirical findings
from psychology as “trivia” rather than core constraints for theory
building and odd to dismiss models of specific empirical findings
if they help explain key aspects of vision. What other area of sci-
ence does not break down complex phenomena into parts? When
Summerfield & Thompson highlight the narrow scope of psy-
chological models with the example “…a model that explains
crowding typically does not explain filling in and vice versa,” it
is important to note that current DNNs account for neither result.

For the sake of argument, let us accept the claim that image-
computable models provide the best way forward for addressing
Newell’s challenge. Nevertheless, it is still the case that only con-
trolled experiments provide specific hypotheses about how to
improve DNN–human correspondences. For example, controlled
experiments highlighted specific limitations of current DNNs as
models of human vision (e.g., relying too much on texture, etc.)
leading to specific suggestions about how to address them (e.g.,
a generative rather than discriminative objective function may
result in a model that encodes shape rather than texture;
German & Jacobs). A research programme of training image-
computable DNNs on naturalistic datasets without running
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specific controlled experiments will simply lead to black-box
models in which there is no understanding of how the model
works, let alone whether the model learns similar representations
to humans.

It is also important to recognize the challenges with working
with naturalistic images even when relying on controlled studies.
For example, Rust and Movshon (2005) argued for the impor-
tance of building theories of biological vision using artificial
and simple stimuli. They pushed back on the view that the best
way to understand vision was to probe the system with naturalistic
images, writing:

Implicit in this approach is the assumption that synthetic stimuli are in
some way impoverished or “simplistic” and therefore somehow miss
important features of visual response. The main – and in our view,
crippling – challenge is that the statistics of natural images are complex
and poorly understood. Without understanding the constituents of
natural images, it is imprudent to use them to develop a well-controlled
hypothesis-driven experiment.

Although these comments were made before the current inter-
est in DNNs, it remains just as difficult to design well-controlled
hypothesis-driven experiments using natural images now as it was
then given the billions of features associated with images. As a
result, DNNs trained on these images become liable to learning
based on shortcuts (Geirhos et al., 2020) and confounds
(Dujmović, Bowers, Adolfi, & Malhotra, 2023), making it difficult
to interpret their mechanisms and internal representations.

Finally, it is important to emphasize that model predictions are
not the only way to advance our understanding of natural sys-
tems. Lin gives the example of Darwinian evolution as a model
that has explanatory power but limited predictive accuracy. We
think the term theory rather than model is more appropriate
here, but the critical point is that evolution explains existing
data very well, and it would be silly to dismiss the theory because
it does not make precise predictions going forward. This point
generalizes to all areas of science, such that unimplemented the-
ories of vision can provide important insights into human vision
if they can provide an account of key existing findings. Indeed,
simply running experiments that test hypotheses can be highly
informative. Of course, formal modelling has an important role
to play, but in all cases, the focus should be on explanation, not
prediction.

R6. The marketing of DNNs as the current best models of
human vision is impeding our progress in developing better
models

When comparing DNNs to humans it is not enough to carry out
controlled experiments, it is also important to emphasize both the
similarity and differences. This involves not only correctly charac-
terizing the results from both DNNs and humans, but also carry-
ing out studies that attempt to falsify claims regarding DNN–
human similarities. Indeed, the best empirical evidence for a
model is that it survives “severe” tests (Mayo, 2018), namely,
experiments that have a high probability of falsifying a claim if
and only if the claim is false in some relevant manner (for a
detailed discussion of the importance of severe testing when com-
paring DNNs to humans, see Bowers et al., 2023).

However, this does not characterize standard practice in the
field at present. Instead, there appears to be a bias towards high-
lighting similarities and downplaying differences. Indeed, Tarr

notes that many of the strong claims regarding DNN–human sim-
ilarities are best understood as marketing rather than serious sci-
entific claims – and on his view, the problem rests with the
consumers who take the hype (too) seriously. He writes a story
of a fool buying a pig because he saw a brochure suggesting
pigs could fly. It is an allegory – the person should not be so
naïve to believe the marketing. Similarly, he cautions us to be
smart consumers of science and not take strong claims regarding
DNN–human similarity too seriously. He writes that DNNs are
only “proxy models” of vision and writes: “I don’t think there is
much actual confusion that deep neural networks (DNNs) are
‘models of the human visual system.’”

We imagine it would be hard forDiCarlo et al. and Golan et al.
to agree with this conclusion given they both repeat the claim that
DNNs are the best models of human vision. But more importantly,
this marketing impacts the field in two general ways.

R6.1. Marketing and research practices

When looking for DNN–human similarities, there is little motiva-
tion to move away from prediction-based studies that can provide
misleading estimates of similarities, little reason for researchers to
carry out controlled studies that provide severe tests of these
claims, and little interest from editors and reviewers in publishing
studies that highlight DNN–human dissimilarities. Consistent
with these claims, two commentators explicitly minimize the
importance of falsification. Tarr writes: “…less handwringing
about what current models can’t do; instead, they should focus
on what DNNs can do.” Similarly, Love & Mok write: “…we
do not share their enthusiasm for falsifying models that are a pri-
ori wrong and incomplete.” Instead, Love & Mok advocate for a
Bayesian approach to model evaluation, where the question is
which model is most likely given the data. But model selection
depends on which data are under consideration, and currently,
too many fundamental psychological findings are ignored because
DNNs do not capture them. If Bayesian methods were used to
select models that account for psychological phenomena, then
in many cases, nonimage-computable models would perform
best.

Perhaps the above comments are anomalous, and Golan et al.
are right to doubt a bias against falsification in the field. But in
our experience, this attitude towards falsification is widespread.
For example, see the following NeurIPS workshop talk by Bowers
(2022) that provides multiple examples of reviewers and editors
stating that falsification is not enough. Rather, it is necessary to
find “solutions” to make DNNs more like humans to publish:
https://slideslive.com/38996707/researchers-comparing-dnns-to-
brains-need-to-adopt-standard-methods-of-science. Similar biases
are well recognized in other fields. For example, it is analogous
to a bias against publishing null results in psychology that is
well understood to have led to many false conclusions
(Simmons, Nelson, & Simonsohn, 2011).

R6.2. Marketing and (mis)characterizing research findings

There is another respect in which this marketing manifests itself,
namely, weak or ambiguous findings are too often characterized
as supporting strong conclusions. We gave multiple examples of
this in the target article (e.g., Caucheteux, Gramfort, & King,
2022; Duan et al., 2020; Hermann, Chen, & Kornblith, 2020;
Kim, Reif, Wattenberg, Bengio, & Mozer, 2021; Messina,
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Amato, Carrara, Gennaro, & Falchi, 2021; Zhou & Firestone,
2019) and there are more examples from the current commentar-
ies themselves. For instance, de Vries, Flachot, Morimoto, &
Gegenfurtner (de Vries et al.) criticize us for claiming that colour
and form are processed entirely separately in V1 and cite some
studies of theirs that show that DNNs do a good job in capturing
important features of human colour processing. We take the point
that the strong claims by Livingstone and Hubel (1988) need to be
qualified given subsequent work (e.g., Garg, Li, Rashid, &
Callaway, 2019), but de Vries et al. mischaracterize their own
findings. They claim that categorical perception of colour emerges
as a function of training models to classify objects and note that
this effect did not emerge in a DNN trained to distinguish artifi-
cial from human-made scenes (de Vries, Akbarinia, Flachot, &
Gegenfurtner, 2022). However, as reported in Appendix 7 of de
Vries et al. (2022), an untrained DNN also showed some degree
of categorical perceptual effects as well. This latter finding sub-
stantially weakens the evidence for their claim that colour percep-
tion emerges as a consequence of learning to classify objects.

Similarly, Love & Mok criticize us for not “engaging with work
that successfully addresses their criticisms,” but the evidence they
report do not support their conclusions. Love & Mok give two
examples from their own lab. First, they describe the work of
Sexton and Love (2022) who note that RSA and linear prediction
methods of comparing DNNs to brains rely on correlations and
write: “Just as correlation does [not] imply causation, correlation
does not imply correspondence.” We agree. The problem is in
how they draw correspondence claims. The authors assess
whether brain signals can causally drive object recognition in
DNNs by substituting the response elicited in an internal layer
of a DNN with (a linear transform of) the brain response elicited
by the same visual stimulus. They find that the activities from
brain regions do indeed drive DNN object recognition perfor-
mance above chance levels and take this as evidence that the rep-
resentations in DNNs and brain are similar.

However, there are both empirical and logical problems with
their studies and the conclusions they draw. Empirically, as
reported in the Supplemental materials (Fig. S10 and Table S3),
when brain data are used to drive DNN object recognition, per-
formance drops from ∼80 to <10% in one experiment and from
∼58 to <2% in the second experiment. This large drop in perfor-
mance is problematic for their conclusion. More fundamentally,
the observation that brain responses support (limited) object rec-
ognition in DNNs does not address the issue of confounds. Just as
texture-like representations in DNNs might be used to predict
shape representations in cortex (leading to good RSA or
Brain-Scores in the absence of similar representations), it is pos-
sible that shape representations in cortex can be mapped to
texture-like representations in DNNs to drive object recognition
to a limited extent. That is, the (weak) causal link between
brain activation and DNN object recognition does nothing to
address our concern that good predictions do not imply similar
representations. Just as correlations do not imply causation, cau-
sation does not imply correspondence.

Love & Mok also describe a study by Dagaev et al. (2023) that
they claim addresses a problem identified by Malhotra, Evans,
and Bowers (2020), namely, that DNNs are so susceptible to
shortcut learning that they will classify the images from
CIFAR10 based on a single-pixel confound. Their solution
involved introducing a too-good-to-be-true prior during training
– if an image could be classified successfully by a low-capacity
network (which Dagaev et al. use as a shortcut detector), the

image is down-weighted during training a full-capacity network.
This way, the full-capacity network only learned on images that,
Dagaev et al. claim, are less likely to contain shortcuts. While
this method is certainly of interest for a machine-learning engi-
neer, it is of limited relevance to a cognitive scientist and does
not address the criticisms made by Malhotra et al. (2021).
Firstly, if the shortcut is widely prevalent in the dataset – in
Malhotra et al. a diagnostic pixel was present in 80–100% of
images – this method would fail. Secondly, there is nothing to
say that shortcuts picked up by DNNs are necessarily easier to
pick up by a low-capacity network. There could be many complex
shortcuts, involving a conjunction of features that will be ignored
by humans and picked up by full-capacity DNNs, but not by low-
capacity DNNs. The point that Dagaev et al. miss is that we do
not want models to ignore simple diagnostic visual features
(humans rely on heuristics across a wide range of domains) but
that they should learn the right kind of features, that is, models
should incorporate appropriate human inductive biases, not what-
ever the low-capacity DNN does not happen to find diagnostic.

Yovel & Abudarham describe how DNNs capture the face-
inversion effect, writing: “Interestingly, a human-like face inver-
sion effect that is larger than an object inversion effect is found
in DNNs.” In fact, as shown by Yovel, Grosbard, and
Abudarham (2022) and others, DNNs show similar size-inversion
effects for face and nonface stimuli when trained with an equal
number of images per category (e.g., when trained to identify
the same number of human faces and birds of the same species).
That is, the models showed an expertise inversion effect, not a
face-specific inversion effect. This contradicts the bulk of current
empirical evidence showing that humans exhibit a greater inver-
sion effect for faces compared to other categories even when
they are expert at the other category. To reconcile these findings
with the modelling work, Yovel et al. (2022) argue that bird
watchers are more expert at human faces compared to birds,
and this is why they show larger face inversion effects. Future
work may well support this hypothesis, and if so, it would provide
a good example of DNNs explaining important psychological
data. However, as it stands, the DNN results are inconsistent
with most psychological data.

This is not to say that there are no examples of DNNs doing a
good job at accounting for the results from controlled experi-
ments. For instance, Anderson et al. describe the results of
Storrs et al. (2021) who identified conditions in which DNNs
do and do not replicate illusions of gloss in humans. They
found that unsupervised but not supervised learning produced
human-like results and suggest unsupervised learning may play
a similar role in humans. Similarly, Op de Beeck & Bracci
describe the controlled studies by Kubilius, Bracci, and Op de
Beeck (2016) showing that DNNs trained on ImageNet are sensi-
tive to many of the nonaccidental features described by
Biederman (1987), a finding we found surprising but subse-
quently replicated in unpublished work.

However, these successes are, in our view, the exception, not
the rule. A combination of relying so heavily on uncontrolled
prediction-based studies, a bias against falsification in controlled
studies, and selectively characterizing results to emphasize
DNN–human similarities is not the way forward to advancing
our understanding of human vision.

The same issues apply when large language models are also
frequently compared to human language. In the target article,
we gave the example of Caucheteux et al. (2022) making strong
conclusions about human language despite the fact that the
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DNNs accounted for approximately 0.004 of the BOLD variance
in response to spoken sentences. Similarly, Schrimpf et al. (2021)
report that transformer models predict nearly 100% of explainable
variance in neural responses to written sentences and suggest
that “a computationally adequate model of language processing
in the brain may be closer than previously thought.” However,
the strong claims from the article are undermined from data
reported in the appendices. From Appendix S1 one finds out
that the explainable variance is between 4 and 10% of the overall
variance in three of the four datasets they analyse, and from the
Appendix section “SI-1 – Language specificity,” we find out that
DNNs not only predict brain activation of language areas, but
also nonlanguage areas, and in some analyses, the predictions
are numerically larger for nonlanguage areas. Rather than provid-
ing evidence that these models process language like humans, the
correlations may be more akin to the spurious correlation
observed between mouse brain activations and cryptocurrency
markets (Meijer, 2021).

Furthermore, as noted by Houghton, Kazanina, &
Sukumaran (Houghton et al.), when a child is learning to
speak, it is unlikely that she is focusing on predicting the next
word. Rather, it seems likely that she is trying to communicate
thoughts and desires. That is, these models learn to produce well-
formed syntactic sentences when trained on arguably the wrong
objective function. Similarly, these DNNs do not appear to
share human-like inductive biases in learning languages, what
Bever et al. call a universal grammar. These innate properties
of humans allow the child to learn languages with many orders
of magnitude less training than DNNs (human learning must
be compatible with the poverty of the stimulus constraint), and
at the same time, limits the types of languages that the human
language system acquires (unlike language learning in DNNs;
Mitchell & Bowers, 2020). In our view, research with DNNs in
the domain of language provides another example that good pre-
dictions in uncontrolled studies provide little evidence that DNNs
rely on human-like representations, processes, or even objective
functions.

We do agree with Houghton et al. that it can be useful to com-
pare language in DNNs and humans to explore the capacities of
DNNs that do not have any language-specific learning mecha-
nism. But at present, not only do the learning objectives and
learning constraints seem wildly different in the two systems,
but also, the performance of fully trained models “sharply
diverges” from humans in controlled experiments (Huang et al.,
2023).

R7. The Brain-Score neuroconnectionists

Before concluding, we thought it would be worthwhile to focus on
the commentaries by DiCarlo et al. and Golan et al.. Many of
these authors have been amongst the most vocal in highlighting
DNN–human similarities, and in both commentaries, they are
describing agendas for how to push the field forward.

Perhaps most surprising for us, DiCarlo et al. do not even
attempt to address the core problem with prediction-based studies
used in Brain-Score, namely, predictions of observational datasets
might be mediated by confounds. Instead, they mischaracterize
our views regarding benchmarks, writing:

Bowers et al. eschew community-transparent suites of benchmarks yet
they imply an alternative notion of vision model evaluation, which is
somehow not a suite of benchmarks… we see no alternative to support

advances in models of vision other than an open, transparent, and
community-driven way of model comparison.

Where DiCarlo et al. get the impression that we are opposed
to “open, transparent, and community-driven way of model
comparison” is beyond us. Rather, we caution against prediction-
based studies and endorse controlled experiments to assess
models, including image-computable DNNs. Indeed, we are
building our own (open, transparent, and community-driven)
evaluation suite, that we call MindSet, that will make it easy for
researchers to assess image-computable DNNs against key find-
ings in psychology (Biscione et al., 2023). MindSet facilitates the
testing of DNNs across a series of controlled psychological exper-
iments, each of which tests a specific hypothesis regarding how
DNNs process and represent information.

The authors also report on an upcoming update on
Brain-Score, with the inclusion of a controlled study by Baker
and Elder (2022). They note that some DNN vision models tested
on this dataset are within the noise ceiling of human data. It will
be interesting to see these results given that Baker and Elder
reported that VGG19, ResNet50, CorNET, and a visual trans-
former all failed to capture human results, writing:

Our configural manipulation reveals an enormous difference in how
humans and networks recognize the objects: while humans rely pro-
foundly on configural cues, networks do not.

Regardless of how current DNNs perform on this specific
dataset, we welcome the introduction of controlled studies to
the Brain-Score benchmark. But if the authors of Brain-Score
modify their benchmark to assess the results of controlled exper-
iments, they will need to assess models in terms of how well they
explain the impact of independent variables that test specific
hypotheses rather than rank models by their overall prediction
accuracy.

DiCarlo et al. also defend their claim that DNNs are the cur-
rent leading models of human ventral visual processing and write:
“Bowers et al. critique ANN models without offering a better
alternative: They imply that better models exist or should exist,
but do not elaborate on what those models are.” They set the
bar quite low for “best” given that current DNNs do extremely
poorly in predicting the results of experiments that manipulate
independent variables and provide little insight into how humans
identify the objects included in current behavioural and brain
benchmark studies. But in any case, we have detailed a long list
of alternative models in section 6.1 in the target article in section
R3 in our response. In our view, these nonimage-computable
models have provided more insight into human vision thus far.
Still, going forward, we do think it is important to try to build
image-computable DNNs that do account for controlled studies,
and in parallel, pursue alternative modelling approaches.

Golan et al. describe a progressive Lakatosian research pro-
gramme they call “neuroconnectionism” (Doerig et al., 2023)
that generates a rich variety of falsifiable hypotheses and advances
through model comparison. They note that neuroconnectionism
itself is best thought of as a computational language that cannot
be falsified and that a failure of a specific DNN does not amount
to a refutation of neural network models in general. The problem
with this is that no one claims that a rejection of a specific model
amounts to a falsification of DNNs in general, and no one rejects
modelling as a core method for advancing science. They are
mounting a defence against an imaginary critique (as do other
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commentators, as noted in sect. R2). Our criticism with neuro-
connectionism is that current claims regarding DNN–human
similarity are grossly overstated because researchers rely too
heavily on uncontrolled prediction-based studies and avoid
severe testing of their hypotheses. When the right methods are
employed – namely, controlled experiments as used in virtually
all other areas of science – models account for few empirical
findings of interest to vision researchers.

Unlike DiCarlo et al., Golan et al. do note some of the
advantages of controlled experiments and briefly touch on the
limitations of uncontrolled prediction-based studies, writing:

Controlled experiments pose specific questions. They promise to give us
theoretically important bits of information but are biased by theoretical
assumptions and risk missing the computational challenge of task perfor-
mance under realistic conditions… Observational studies and experiments
with large numbers of natural images pose more general questions. They
promise evaluation of many models with comprehensive data under more
naturalistic conditions, but risk inconclusive results because they are not
designed to adjudicate among alternative computational mechanisms
(Rust & Movshon, 2005). Between these extremes lies a rich space of neu-
ral and behavioral empirical tests for models of vision. The community
should seek models that can account for data across this spectrum, not
just one end of it.

But we do not find their arguments against controlled studies
and in support of obsrevational studies persuasive. Yes, controlled
studies are biased in the sense that they are driven by theoretical
assumptions, but the unstated (and unknown) assumptions in
uncontrolled studies do not avoid biased results. For example,
the image datasets used in Brain-Score (see Fig. 2 in the target
article) are not “neutral” and different results are obtained in
other datasets (Xu & Vaziri-Pashkam). And what does it mean
to claim that observational studies with naturalistic images prom-
ise to evaluate many models, and at the same time, note that this
approach risks inconclusive results? Indeed, predictions made
from naturalistic images taken from observational studies are,
by their very nature, ambiguous as there are many potential con-
founds that can lead models to make predictions on the basis of
shortcuts and confounds (Dujmović et al., 2023; Geirhos et al.,
2020).

Furthermore, what does it mean to design tests that fall
in-between observational and controlled studies? An experiment
either does or does not manipulate independent variables
designed to test hypotheses and rule out confounds. If the point
is that it is important to work with image datasets that vary in
their degree of complexity and naturalism, it remains the case
that controlled experiments need to be run on all types of stimuli.
Indeed, Golan et al. cite the discovery of texture bias and adver-
sarial susceptibility as two examples of shortcomings of DNNs
that have led to improvements. Putting aside the fact that current
DNNs show almost none of the features of human shape process-
ing and there are still no solutions to adversarial images, these
limitations were both identified using controlled experiments
that rely on complex but unnatural stimuli. Golan et al. do not
identify any insights that have derived from uncontrolled studies.

Golan et al. also caricature psychology, writing: “Traditional
psychological experiments are designed to test verbally defined
theories.” In fact, controlled experiments have been used to assess
computational models in psychology long before the invention of
AlexNet (e.g., Grossberg, 1967; Hummel & Biederman, 1992;
Medin & Schaffer, 1978; Ratcliff & McKoon, 2008; Rescorla &
Wagner, 1972; Shepard, 1987). This general lack of regard for

formal models and results in psychology (not to mention the
lack of regard for verbal theories) is impeding progress in charac-
terizing DNN–human similarities and building better models of
vision and the brain more generally. Indeed, this common and
unwarranted attitude towards psychology partly motivated us to
write the target article in the first place.

Golan et al. also defend the claim that DNNs are the “best
models” of human vision, writing:

The empirical reason why ANNs can be called the “current best” models
of human vision is that they offer unprecedented mechanistic explanations
of the human capacity to make sense of complex, naturalistic inputs.

Here perhaps we should take the advice of Tarr and appreciate
this is more marketing than a scientific statement.
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