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Abstract

Supervised learning operates on the premise that la-
bels unambiguously represent ground truth. This
premise is reasonable in domains wherein a high
degree of consensus is easily possible for any given
data record, e.g. in agreeing on whether an im-
age contains an elephant or not. However, there
are several domains wherein people disagree with
each other on the appropriate label to assign to a
record, e.g. whether a tweet is toxic. We argue that
data labeling must be understood as a process with
some degree of domain-dependent noise and that
any claims of predictive prowess must be sensitive
to the degree of this noise. We present a method for
quantifying labeling noise in a particular domain
wherein people are seen to disagree with their own
past selves on the appropriate label to assign to a
record: choices under prospect uncertainty. Our re-
sults indicate that ‘state-of-the-art’ choice models
of decisions from description, by failing to consider
the intrinsic variability of human choice behavior,
find themselves in the odd position of predicting
humans’ choices better than the same humans’ own
previous choices for the same problem. We con-
clude with observations on how the predicament we
empirically demonstrate in our work could be han-
dled in the practice of supervised learning.

1 Introduction

As machine learning models are applied to an increasing pro-
liferation of prediction tasks it is puzzling to find high pre-
dictive power in domains wherein even human experts are
known to be highly imprecise. For example, it is well known
that the interpretation of chest X rays for diagnosing pneumo-
nia is a highly variable exercise, with inter-observer agree-
ment between radiologists measured to be around Cohen’s
k = 0.4 across multiple studies. In other words, given binary
class labels (pneumonia or not), it is approximately as likely

*This work is primarily based on our paper titled ”Limits on Pre-
dictability of Risky Choice Behavior” which won the Marr prize at
CogSci 2020.

to expect any two radiologists to converge to a positive diag-
nosis of pneumonia from an X-ray as to flip a coin [Wootton
and Feldman, 2014].

How are we then to interpret state-of-the-art super-
vised learning models of pneumonia detection, which re-
port extremely high validation set accuracy in excess of
90% [Stephen et al., 2019]? Similarly, how do we parse
claims of algorithms demonstrating superior agreement to
chest X ray dataset labels than a panel of radiologists [Ra-
jpurkar et al., 2017]? More generally, how do we make sense
of situations wherein (a) the only source of ground truth is
human judgment, and (b) human predictive ability for other
humans’ choices is exceeded by algorithms’ ability to predict
human choices? This is the problem we discuss in this paper.

To characterize the problem mathematically, assume a frac-
tional confusion matrix emerging from a binary classification

task
a b
,a+b+c+d=1.
c d

With some algebra, it is possible to specify the F1-score
corresponding to this confusion matrix as

2
Feo ™ (1)
2a+b+c
and it’s Cohen’s k as
2ad —
. (ad — bc) )
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The term b+ c is simply the error fraction in the classifica-
tion. When a classifier is perfect, b = ¢ = 0, and it is trivial
to see that F = K = 1, independent of the values of {a,d}.
However, notice that a simple rearrangement of Equation 2
gives us,

b+c=2(ad —bc)(x ' —1). (3)

Since the determinant of the confusion matrix (ad — bc) is
essentially a measure of how much discriminability is possi-
ble in the dataset for human annotators, it is not possible to
drive it arbitrarily low without compromising on annotation
quality. Therefore, Equation 3 places an interesting limit on
the minimal (or Bayes) error expected out of a binary clas-
sification problem [Hastie et al., 2009], given empirical esti-
mates of K. In particular, the error fraction rises hyperboli-
cally with respect to x. The error fraction magnitude, in turn,
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places an upper bound on the maximum possible F1 score.
That is, for a particular value of K, no matter what values of
{a,d} we use, the highest achievable F1 score will be a value
lower than 1.

As we point out above, we increasingly see extremely good
predictions emerging from prediction algorithms for domains
wherein x is known to be low, suggesting that the correspond-
ing ground truth predictive ability of annotators is also low.
Thus, prediction algorithms appear to show a negative per-
formance gap with respect to annotators.

We recently characterized the presence of such a nega-
tive performance gap between human and model judgments
for risky choices in economic settings [Sifar and Srivastava,
2020]. Beginning with Erev et al. [Erev et al., 2010], tourna-
ments have been conducted by allowing teams to fit choice
models to human choices made on some certainty equiva-
lence problems [Farquhar, 1984], and winning models are
identified as the ones that “most accurately” predict human
choices for a different set of problems. The empirical success
of this research program, given its pure predictive emphasis,
is measured in terms of the correlation of model predictions
with human choices. Choice models developed through these
tournaments have gone from explaining about 70% of the
variance in human choices, as in the baseline models used
in Erev et al. [Erev er al., 2010] to explaining more than 90%
of the variance in human choices, as in the BEAST model
presented in [Erev et al., 2017].

As with the pneumonia example above, this empirical suc-
cess is more than a little surprising, given the irreducibly
stochastic nature of risky choices [Bhatia and Loomes, 2017].
If someone asks you to either pick 20 tokens of cash for cer-
tain or a gamble that will pay 100 tokens 20% of the time, it is
very likely that your response may vary across multiple elici-
tations [Luce et al., 1965]. Thus, if someone uses one of these
elicitations to construct a dataset to fit a model of decisions
under risk, exceptionally high agreement between the model
and the dataset labels would actually mean that the model of-
fers a poor explanation for the behavior, since it shows less
variability in choices than humans actually do. This leads to
an obvious question: what is the highest model-human agree-
ment one could expect in a model of risky economic choice
that would be consistent with real human judgments? In [Si-
far and Srivastava, 2020], we answered this question via a set
of behavioral choice experiments to calculate within-subject
consistency on risky choice problems, as we summarize be-
low.

2 Finding Limits to Predictability
2.1 Design

A set of expectation-matched risky choice problems were pre-
sented to each participant, at a gap of at least a week over the
course of three weeks Two experiments were conducted, test-
ing for choice consistency in decisions from description and
experience respectively.

In each experiment, each participant was presented with 30
problems per week. Half of the problems presented in Week
1 were repeated during Week 2, and the other half repeated in
Week 3. Problem order and selection was randomized across
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participants, and within participants for repeat presentations.
Here, we refer to the first instances of problem presentation
for a given participant as fresh problems, while second pre-
sentations will be called repeated problems.

The problem space used in both experiments is the Estima-
tion set in the first Technion Choice Prediction Tournament
consisting of 60 problems [Erev et al., 2010]. University stu-
dents were recruited to run the experiment which was hosted
online and participants were able to participate at their con-
venience. Email reminders were sent every week to all par-
ticipants. The study protocol was reviewed and approved by
an IRB.

2.2 Decisions from Description

In decisions from description (DFD), for each problem,
participants were asked to choose between risky and safe
choices, given explicit payoff and probability descriptions us-
ing description paradigm. A total of 58 (19 female, 39 male)
participants completed the experiment, without compensa-
tion. Feedback was only provided for one of the randomly
selected problems at the end of each day of the experiment as
a notional payoff.

2.3 Decisions from Experience

25 male, 22 female participants completed the 30 problems
in Decisions from Experience (DFE) experiment, specified
using the sampling paradigm given in [Erev er al., 2010]. In-
structions were followed by two practice games. Participants
had the opportunity to learn the payoff distribution of each
game in “sampling stage” after which they indicated their fi-
nal preference in the “choice stage”. At the end of the ex-
periment, one of the randomly chosen game’s outcome (as
recorded in choice stage) was scaled between -100 to 100 to
make the net payoff between INR 0-200 (inclusive of a par-
ticipation fee of INR 100).

2.4 Response Variables

For every problem in each experiment, the proportion of peo-
ple choosing the risky prospect is recorded and hereby we call
it risky choice rate (R-rate).

Decisions from experience, however, involve another latent
decision of when to stop sampling. We measure the consis-
tency of this decision by recording the number of samples the
decision maker takes before committing to the final choice,
henceforth called sampling duration (SD).

2.5 Measuring Choice Consistency

We measured choice consistency by comparing the response
variable measures across repeated elicitations of each prob-
lem, where repeated elicitation act as the prediction for the
first week’s observations. At the cohort level, we quantify
this by computing the correlation between the R-rate of fresh
and repeated elicitations. This measure is additionally attrac-
tive for offering a direct interpretation in terms of percentage
of variance explained [Erev et al., 2010].

We also report the proportion of agreement Pygr.., as calcu-
lated in Erev [Erev et al., 2010], as an additional cohort-level
measurement of consensus in choices. This is set to 1 for a
problem if both predicted and observed R-rates are greater
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than or less than 0.5; otherwise it is set to zero. We report
this value, averaged across all tested problems, in percentage
terms, following convention [Erev et al., 2010].

To understand internal stochasticity at the individual level,
we measure the intra-rater reliability using Cohen’s K [Lan-
dis and Koch, 1977]. We report median intra-rater reliability
across participants, unless stated otherwise.

3 Summary of Results

In all analyses reported below, we refer to our data sources
as follows. Data collected in our experiments are denoted
as coming from RR (Repeated Risk). Data from the train-
ing datasets from the first Technion tournament will be re-
ferred to TE (Technion Estimation), and from the competition
datasets from the same tournament as TC (Technion Compe-
tition). We use both DFD and DFE datasets from all these
data sources. Data from the mixed paradigm used in Plonsky
et.al [Erev et al., 2017] will be referred to using EEP.

Table 1 summarizes the human-human consistency mea-
sures for both experiments in the first row. These results are
presented alongside human-model consistency measures on
our data (second row) as well as empirical measures reported
in [Erev er al., 2010; Erev et al., 2017] for comparison.

3.1 Decisions from Description

Three important observations stand out. First, when we use
the cohort’s R-rate calculated during repeated presentations
of problems to predict their own R-rate during the first presen-
tation of the same problems, we obtain correlations ranging
between 0.67-0.78 and proportions of agreement ranging be-
tween 78%-85%. Notably, these values are much lower than
corresponding values previously found for model-data com-
parisons, even for baseline models like cumulative prospect
theory [Erev et al., 2010].

Second, the baseline model does not perform expectedly
well when we tested it on our data, yielding correlation and
agreement proportions of 0.69 and 81% respectively, sugges-
tive of some over-fitting of the original models.

Third, very little intra-level agreement at individual level is
seen across participants [Landis and Koch, 1977], with k¥ =
0.25 in both repeated sets, consistent with our expectation of
high intrinsic stochasticity of human choice behavior [Luce et
al., 1965]. The baseline model agrees with the human choice
data consistently more while predicting the Technion data sets
K € {0.43,0.51} than human choices in our dataset agrees
with itself. To add to the puzzle, when applied to our dataset,
the model agrees with the data about as much (x = 0.23) as
expected by the empirical measurements. This observation is
again consistent with over-fitting of the original models.

3.2 Decisions from Experience

The main observation here is that the range of human-human
correlations and agreement proportions seen in our data in-
cludes the corresponding model-human measurements re-
ported on the competition set in Erev [Erev et al., 2010],
though not similar measurements seen on the estimation set.
Since the winning ensemble model in this tournament was not
significantly better than the simple primed sampler baseline,

our observation is consistent with the possibility that a simple
primed sampler model might be the best possible model for
predicting R-rates in the decision from experience task.

Secondarily, as noted above, the DFE paradigm actually in-
volves two decisions per problem presentation - an overt risk
preference, and a latent information search stopping decision
governing when to stop sampling and make a final choice. As
shown in last column of Table 1, human-human correlations
for sampling duration in repeated problems for all observa-
tions is 0.64, dropping to 0.54 when only observations with
sampling duration greater than two are considered. These val-
ues indicate reasonable upper bounds on the predictability of
sampling duration in decisions from experience.

4 Discussion

The principal contribution of [Sifar and Srivastava, 2020] was
a demonstration, using a test-retest experimental paradigm,
that state-of-the-art prediction models of risky choice predict
individuals’ choices in economic risky choice experiments
better than the individuals’ own previous history of respond-
ing to the exact same choice problem. It is possible that sub-
tly over-fitting to the validation set in a tournament setting
accounts for the negative performance gap seen in this set-
ting [Dwork et al., 2015]. In this condition, the large number
of degrees of freedom in model architecture design means
that a process of iterative development of models that yield
improvement in tournament leader-board ranks is effectively
equivalent to using validation set error to search the space of
available models. Restricting access to validation sets dur-
ing the process of model development is a simple technical
solution for this problem.

However, the point of genuine interest in this work lies in
its amplification of a really simple point: the process of at-
taching labels to observations is stochastic [Anderson, 1991],
and the degree of variability in this process in different do-
mains places fundamental limits on the degree of predictabil-
ity possible in those domains [Hastie et al., 2009]. For do-
mains with low or zero variability, e.g. object recognition in
images, domains where access to some deterministic ground
truth is available etc. it is possible to ignore the variability
and interpret supervised learning results reasonably. How-
ever, for domains with high variability in the label assign-
ment process, ignoring this variability is problematic, since it
becomes difficult to claim that a model that makes more ac-
curate predictions on our dataset’s labels is a better model of
the underlying reality. If my model is trained using the tuple
X,y,y € {0, 1} based on one elicitation of y, can I really say I
have a useful model if reality approaches y ~ Bern(0.5)?

4.1 Negative Performance Gaps are Ubiquitous

Ignoring the stochasticity of data labels has led to a prolifera-
tion of highly accurate machine learning predictions for prob-
lems, surpassing empirically estimated Bayes error estimates.
In parallel with the pneumonia example cited above, multi-
ple authors have proposed high accuracy depression detec-
tion models that learn to classify labels derived from DSM or
PHQ based diagnoses of patients, and associated with respon-
dents’ EEG signals [Li e al., 2019], speech patterns [Low et
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DFD DFE
Data Sources Subset  Observed  Predictor Correlation « Pagree  Correlation ¥ Pagree SD
RR A Week 1 Week 2 0.78 0.25 85% 0.83 0.40 90% 0.64
B Week 1 Week 3 0.67 0.25 78% 0.73 0.32 88% 0.65
RR Fresh A,B.C,D BM 0.69 0.23 81% 0.84 0.23 92% -
BM 0.85* 0.43 95%* 0.88* 0.25 95%* -
TE - TE
WM 0.92% - 88%* 0.92% - 95%* -
BM 0.86* 0.51 93%* 0.80* 0.19 82%* -
TC - TC
WM 0.94* - 90%* 0.80* - 83%* -
EEP - EEP BEAST 0.95** - - - - - -

Table 1: Choice consistency analysis. Choice agreement indicators to check the test-retest reliability between the repeated problems in the
first row. Remaining rows indicate similar analysis using different models as predictors on the observed data sources.

BM, WM = Baseline, Winning model for respective paradigms as given in [Erev et.al 2010]

> fresh elicitations, * as claimed in [Erev et. al, 2010], ** as claimed in [Erev et. al, 2017]

al., 20201, social media usage dynamics [De Choudhury et
al., 2013] and a variety of other sources of information. State-
of-the-art predictions attain F-scores of close to 0.9, whereas
test-retest K estimates for the most recent DSM-5 instrument
are estimated at a much more modest 0.47 [Chmielewski et
al., 2015].

Beyond domains for which consistency or test-retest reli-
ability estimates are empirically available, it is deeply prob-
lematic to observe supervised learning methods being used
in criminological settings, e.g. trying to predict the type of
crime that someone may potentially commit, based on a retro-
spective analysis of crimes committed by people with similar
psychological profiles [Watts et al., 2021]. Such projects are
fundamentally flawed because the math underlying the pre-
diction model only makes sense if we assume that a person
in the training dataset with a psychological profile X would
have committed crime y as opposed to some other ¥ in any
possible alternative circumstances, or even if given the chance
again in the same circumstances.

This last example further accentuates our basic point about
the epistemic limitations of supervised learning as currently
practised: the deterministic mapping from features to labels,
in conjunction with limited sampling from the labeling pro-
cess, restricts Bayes error calculations [Hastie et al., 2009].
It also points to an alarming prospect: supervised learning
systems become superficially more attractive precisely when
they present large negative performance gaps, i.e. when
the machine appears to make clear and confident predictions
about things that humans only have muddled ideas about.
Thus, for example, several units of the US judicial system
are using COMPAS, a putatively intelligent supervised learn-
ing algorithm built using 137 demographic factors that pre-
dicts offenders’ recidivism risk with about 65% accuracy, as
opposed to a simple two factor linear regression model that
offers the same degree of accuracy [Dressel and Farid, 2018].
The opacity and complexity of the model furnishes its pre-

dictions with an undeserved patina of competence. To avoid
such false confidence in Al systems operating in high stakes
domains, it is vital that the stochasticity of dataset labels be
examined rigorously and openly.

4.2 Ways Forward

The reproducibility crisis in artificial intelligence is widely
acknowledged [Hutson, 2018], and several institutional re-
forms have been set in motion to proactively address it, in-
cluding code and data sharing initiatives [Pineau et al., 2020].
Our work suggests an additional aspect that could assist in
this exercise - designing mechanisms to incentivize and pro-
mote replica data annotation efforts, particularly for data do-
mains where ground truth is not objectively available. At a
minimum, such efforts will allow us to estimate limits to pre-
dictability in such domains, and allow more reasonable inter-
pretations of machine learning models’ performance.

Some variability in label assignment can be reduced by
averaging inputs from multiple annotators, thereby reducing
measurement noise [Karimi et al., 2020]. However, as our
work demonstrates, in several important domains, such ag-
gregation will still not remove process noise intrinsic to the
labelling process.

Acquiring an empirically informed appreciation of limits
to predictability in important domains will permit consider-
ations of explainability and interpretability to drive the dis-
course on model selection [Rudin, 2019]. If notional predic-
tive ability claimed by complex, uninterpretable models ex-
ceeds reasonable estimates of predictability upper bounds in
such domains, it will be much easier to justify shifts to sim-
pler models that are interpretable by design [Rudin, 2019].

So long as supervised learning remained a mathematical
curiosity, it was possible to remain agnostic about the relia-
bility of data annotations. Today, when supervised learning
is increasingly being used in consequential real-world appli-
cations, practitioners and consumers can no longer afford this
luxury [O’neil, 2016].
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