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Machines do not look at the world the way humans do - humans generalize rapidly and

accurately, while machines need extensive training. Machines recognize zebra crossings as

actual zebras and school buses as giraffes, and humans do not. We propose that artificial

agents can be brought closer to humans by improved representation learning. Specifically,

we hypothesize that learning motor representations instead of purely visual ones can im-

prove visual similarity judgments. We investigate this by embedding line drawings of ob-

jects in a motor space and computing similarities. We use a Program Learning paradigm to

infer motor programs and define and test novel metrics of motor program similarity. Our

formulation of motor programs and motor similarity fails to produce human-like category

discrimination, and we conclude by presenting potential rectifications for the same.
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को अद्धा वेद क इह प्र वोचत्कुत आजाता कुत इयं िवसृिष्ट :।
अवार्ग्देवा अस्य िवसजर्नेनाथा को वेद यत आबभूव ।।

Who really knows? Who will here proclaim it?
Whence was it produced? Whence is this creation?

The gods themselves are later than creation,
so who knows truly whence it has arisen?

Nasadiya Sukta, Rigveda 10:129
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Chapter 1

Introduction

1.1 Introduction

Consider the following image of a tapir.

Figure 1.1: The tapir is a large, pig-like, herbivorous mammal

Now look at the following 6 images and label them as tapir or non-tapir.

Figure 1.2: Label these images as tapir or non-tapir

Chances are that you were able to label the images accurately (only the first 3 are tapirs)
and effortlessly. Assuming that you hadn’t seen a tapir before, you just learnt to recognize
one through a single image. Not only that, you generalized what you learnt across size,

1



Chapter 1. Introduction 2

viewpoint and colour. Learning and generalizations of this kind are considered hallmarks
of intelligent behaviour. While it comes naturally to humans, a neural network trained
on the same image fails at the classification task. What is it that we learn and machines
don’t? And can they be taught to learn like us?
In figure 1.1, you saw a number of features - color, snout, four legs, shape and size of
the body, etc. The anteater, pig and aardvark from 1.2 shared some of these features,
but didn’t quite look like a tapir. At the same time, the first three photos lacked some
features but you recognized them (presumably) correctly. You learnt what it means for
something to be a tapir; its tapir-ness, so to say. When we see an object, we represent it
in a format that allows mental manipulation. In other words, we create a representation.
Among other things, we use the representation to deduce the object-ness of the object, or
what it means for something to be that object. This deduction leads to the formation of a
concept of the object. Although cognitive scientists are divided vis-a-vis the exact nature
of representations and concepts, most of them agree that they exist in the mind and aid
recognition and categorization.
The neural network that sees figure 1.1 also creates a representation in the form of an
activation pattern and weight parameters. However, it faces a data-versus-generalization
tradeoff. With a single data point, its representation is too specific. That is, an object
must possess all the features of the exemplar to classify as a tapir. In order to make
the representation generalized, the neural network needs more data points. This tradeoff
causes learning in machines to be data-intensive and non-general.

1.2 Objective

The key objective of this work is to enable few-shot, transformation-invariant learning of
visual concepts in machines. Not only should they learn from a small amount of data,
they should also recognize objects as they undergo transformations (such as changes in
object position, distance, pose).
Instead of building on standard ML approaches, we take cues from human concept-learning
and object recognition, and attempt to build an intuitive and cognitively informed model.

1.3 Proposed Approach

Traditional paradigms view object recognition as a feature-matching exercise. Objects are
represented as vectors in feature spaces, such that clusters of vectors constitute individual
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categories. However, accounting for all possible features increases the dimensionality of
vectors and consequently makes generalization impossible. Therefore, machines need to
learn which features define an object or a category. Unlike humans, they iterate through
millions of images to do this.
We propose comparing how objects are drawn instead of representing them only as col-
lections of visual features. We believe that drawing patterns (called motor programs
henceforth) of objects can be more discriminative than visual features alone. We use a
Bayesian Learning approach to create motor representations. The Bayesian approach is
also useful in reducing the data requirements and enabling few-shot learning.

1.4 Organization

We begin with building an intuitive understanding of representations and reviewing philo-
sophical standpoints in Chapter 2. In Chapter 3, we set the stage for shape skeletons and
present a case for their usefulness in representing object structure. Then we describe the
Bayesian Program Learning framework, which was used for motor program inference, in
4. Chapter 5 is dedicated to our own experiments and analyses, followed by a discussion
about the implications of this work and future possibilities in Chapter 6.



Chapter 2

Representations

A discussion about recognition requires being prefaced with a discussion about represen-
tations. When we say we recognize an object X, it implies that X looks like something
we’ve seen before. That is, we compare what we see with something stored in our memory
and conclude that it is a match. This matching process warrants representing both the
object and our memory of it in a standard format.
Many philosophers have used computationally-inspired terms - ‘symbol strings’, ‘information-
bearing states’ and ‘machine tables’[47] - to describe representations. Suppes [50] gave a
more concise definition - “Representation of something is an image, model, or reproduc-
tion of that thing.” We can obtain a more functional characterization by asking what
representations should be.

1. They should correspond to something in the world: Because they support recognition
and categorization, representations should be proxies for objects out there.

2. They should be general, but also specific: Transformations (change in viewpoint,
rotation, etc.) can change the way things appear to people. Representations should
be generalized enough to account for such variations. Simultaneously, they should
be discriminative (i.e., one representation should not stand for more than one object
or class of objects).

3. They should be easy to learn: Humans learn object identities and novel categories
rapidly, using very few examples. Representational structures that support this
learning should not be complex.

4. They should be manipulatable: Cognitive processes involve manipulating informa-
tion. Assuming that representations are the information-bearers, they should be

4



Chapter 2. Representations 5

capable of being manipulated. In the specific case of recognition, it should be pos-
sible to compute similarity between two given representations.

2.1 What comprises representations?

What comprises representations? – the question has kept philosophers of mind occupied
for a long time. The candidates are diverse - images, data structures, activation levels
in processors. On the other end of the spectrum, proponents of the dynamical theory of
mind reject the very notion of representations and propose a non-computational, dynamical
systems view [24].
We divide the prospective constituents into four categories:

1. Imagery

2. Symbols

3. Feature spaces

4. Structural descriptions

2.1.1 Imagery

Thinking about things in the world usually involves picturing them. Therefore, it is in-
tuitive to consider that representations must be images. This proposition has its roots
in Aristotelian thought. ‘To represent something is to be it’ - this was the central tenet
of what Cummins [12] calls the ‘Mind-Stuff-Informed’ class of theories. In these theories,
representations of the world are mental models that capture all physical aspects of the real
world. Such a line of thought is sometimes also called reconstructionism - representing the
information we receive by reconstructing it as it is. Some authors [17] have claimed that
Marr’s early work also falls in the reconstructionist domain. Much of vision research in
the 1980s was aimed at finding the best way to reconstruct the world in 3D [2][8].
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Figure 2.1: Aristotle representing
a cat with a ball by reconstruct-
ing it as it is. Source: Cummins

(1991)[12]

Figure 2.2: Berkeley also rep-
resents a cat with a ball by re-
construction. Source: Cummins

(1991)[12]

In theory, a replica of an object is the best possible candidate for visual tasks because
practically no information is wasted or lost. But in practice, reconstructionism leads to a
multitude of problems [18] [45].

1. Grounding
The reconstructionist hypothesis does not explain how mental replicas can be grounded
in meaning. In Figures 2.1 and 2.2, Aristotle and Berkeley represent a cat with a ball
by creating mental reconstructions. But it is unclear how those reconstructions will
be compared with other such reconstructions, or how Aristotle and Berkeley would
derive meaning from them.

2. A representation for everything
Generalization across transformations is difficult in image representations. If the
mind had a 2D image of an object, a change in viewpoint or rotation in depth would
render the mental image useless. Consequently, a person would need to create a
new mental picture for every transformation of the same object. A 3D model, on
the other hand, would be hard to learn due to the number of exemplars needed for
model creation.
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Figure 2.3: Jastrow’s duck/rabbit drawing, used by Wittgenstein in Philosophical In-
vestigations illustrates the difficulty of grounding images in meaning

2.1.2 Symbols

Symbols are amodal and do not necessarily bear any resemblance to the object they repre-
sent. As an analogy, take variables in algebra that stand for numbers and are manipulated
the way numbers would be. Similarly, symbolic representations stand for objects in the
world. However, because they are not inherently similar to the things, gross similarity
cannot account for matching. Symbols are seminal to computationalism because they can
be evoked as inputs and outputs of mental computations.

2.1.3 Feature spaces

A feature space is an N -dimensional space (N : number of features), in which vectors that
represent individual objects are embedded. Many possible formulations of vectors exist,
the simplest being binary arrays - arrays composed of 1s and 0s to indicate the presence
or absence of features.
DiCarlo & Cox [15] presented a neurophysiological interpretation of feature spaces, wherein
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Figure 2.4: Hobbes uses semantic symbols to represent a cat with a ball. Source:
Cummins (1991)[12]

the representation vector is a collection of visual neuronal responses embedded in a high-
dimensional space. In addition to making manipulation straightforward, this formalism
makes it possible to consider many types of features. There are two significant drawbacks
associated with it.

1. Invariance
To create a feature vector, one needs to identify features that match within a category
but not across categories. These features should also be transformation-invariant.
Hebart et al. [27] attempted to do this empirically through an odd-one-out task. Al-
though they were able to extract feature dimensions that humans used for similarity
judgments, the robustness of these dimensions is yet to be tested.

2. Curse of Dimensionality
An increase in the number of dimensions causes an exponential increase in the num-
ber of examples required for learning. It is possible to reduce dimensions, but doing
so while preserving invariant features is a challenge.
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Figure 2.5: Hebb represents a cat with a ball as brain activity. Source: Cummins
(1991)[12]

2.1.4 Structural Descriptions

Describing an object’s shape or geometric structure in terms of generic components and
spatial relationships forms its structural description. The parts and spatial relationships
are standardized so that all object descriptions use the same vocabulary. The most
well-known example of a structural description framework is Biederman’s Recognition-
by-Components theory [7]. It postulates a set of thirty or so primitive shapes called geons.
Geons have a low likelihood of occurring in images by chance (non-accidental) and are
well-suited to making inferences about 3D object structure.
Simple structural descriptions do not account for quantitative information present in im-
ages. While this makes them invariant to some extent, it also causes the loss of potentially
relevant information (for instance, the relative sizes of parts). Descriptions based on geo-
metric constraints address this shortcoming by maintaining a list of coordinates of promi-
nent features. Alignment theories [55][41] use such descriptions to compute the hypothet-
ical viewing positions of objects and re-align them for similarity computation. However,
the identification and extraction of primitives in real-world images is a complicated and
unreliable process (Figure 2.7). There is also degeneracy in structural descriptions (see
Figure 2.8), meaning that multiple representations are possible for the same object. Addi-
tionally, comparing representations of this class is equivalent to labeled graph matching.
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Figure 2.6: Structural descriptions employ primitive components to represent objects

Solving this problem is simple only when the descriptions are simple or when sub-optimal
solutions are admissible.

Figure 2.7: Real-world scenes,
such as this NYC hot dog cart, are
difficult to decompose into parts

Figure 2.8: Degeneracy: The
possibility of multiple structural
descriptions for the same image
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2.2 Conclusion

As one would expect, all significant theories associated with visual representations have
drawbacks that cannot be ignored. In this work, we attempt to combine the generalizability
and invariance of structural descriptions with the computability feature spaces. Instead
of describing what objects look like, we define how they are drawn. These descriptions
(which we call motor programs) capture the presence of relevant features in objects, are
immune to transformations, and are easy to manipulate. Consequently, they allow object
discrimination and can be used for object recognition with ease.



Chapter 3

Shapes, Skeletons, Drawings

The role of an object’s shape in its recognition is intuitive to all those who can see. In
chapter one, while trying to recognize tapirs, you likely compared the body structures of
animals shown to you. It is infrequent for two similar-looking images to be structurally
very different. Elder & Velisavljević [20] tested the significance of various cues in a rapid
animal detection task and found that humans relied primarily on shape and texture for
visual tasks. Carlson et al. [10] supported this with a MEG study, showing a negative cor-
relation between the difference in shapes of two objects and how quickly the brain can tell
them apart. An apposite shape dependency is also present in computer vision models. But
outlines and contours are not the most dependable candidates for modelling object struc-
ture. In this chapter, we briefly review how the brain and machines represent geometric
structures of objects, and lay the foundations for skeleton-based motor representations.

3.1 Shapes in the Brain

Inside the brain, shape processing is handled primarily by the ventral visual pathway [42].
Neuronal representations in the early stages, starting from the retina till V1 and V2, are
confined to encoding local features. As the information proceeds towards V4 and the IT
cortex, the receptive fields become larger and more complex, and representations are more
global.

12
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Figure 3.1: The anatomical path taken by visual information. Adapted from [16] and
[19]

3.1.1 Areas V1, V2

In their famous experiment with cats, Hubel & Wiesel [28] demonstrated that neurons in
Areas V1 and V2 (primary and secondary visual cortices) are tuned to local orientations.
In comparison to V1, V2 receptive fields are larger and respond to more complex local
features. However, representations in both areas comprise pointillist inputs from the LGN
and are very similar.

3.1.2 V4 and IT Cortex

Area V4 is the gateway between early cortices and the inferotemporal (IT) cortex. The
neurons here represent global contour information [9] and specific types of deformations
[31].
There is empirical evidence that demonstrates invariant object recognition in the IT cortex
[26] [46]. Interestingly, individual neurons in this area are not immune to variations in
size, pose, position and background [14]. In fact, neurons that are more object-identity
specific are not highly invariant[59] [16].

Despite extensive neurophysiological research, we do not fully understand how neuronal
representations support visual perception. Though IT neurons seem to respond to ob-
ject categories, how the brain compares what it sees with what it knows remains unclear.
Evidence from psychophysics [40] [53] and physiology [44] indicates that cortical object
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recognition is supported by view-based models, wherein collections of view-specific fea-
tures constitute object representations. But contradicting data suggesting that the brain
creates structural descriptions also exists, and consensus on the issue is wanting [51] [52].

3.2 Shapes in Computational Models

Computer vision models have improved exponentially and can now exhibit an almost
human-like accuracy on recognition tasks. Studies with Convolutional and Deep Neural
Networks show that they employ shape cues [36], attend first to the bigger picture (Global
Advantage Effect) [30], and that their internal activity correlates well with IT responses
[57][32] and BOLD activations [49]. At the same time, there exist significant differences
between humans and these networks. For starters, their performance is sensitive to local
features, unlike humans, whose similarity judgments depend primarily on global structures
[5][6]. They are constantly outperformed by humans, and when they fail, they do so in
ways that humans don’t.
A large part of the computer vision research is devoted to modifying models to address
these issues. But instead of dipping our feet further into the technicalities of computational
models, let’s turn our attention to the abstract shape representations inside of them.
In his review of computational models of object structure, Elder [19] distinguishes two
classes of representations - generative and discriminative.
As the name suggests, generative representations capture the process of generation of the
shape and are enough, in theory, to recreate it.
Discriminative representations describe how the shape is different from other shapes and
have little to do with how it was created. Most modern models, including DNNs, employ
representations of the latter kind. But they are only adept at discriminating classes from
one another (cats vs dogs, for example) and not at describing images or computing simi-
larity.
On the other hand, generative models represent structures in a way that is closer to
our phenomenological experience of shape. Although they do not meet the performance
benchmark set by DNNs, recent evidence suggests that 3D generative models can explain
behavioural responses better than their discriminative counterparts [22].
While an object’s shape is seminal to both its neuronal and computational representations,
an outline or contour-based description of structure is not without impediments. For in-
stance, exemplars of the same category have different outlines as illustrated in Figure 3.2.
Contours are also sensitive to transformations and minor deformations along edges (Figure
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3.4). Due to these issues, representations composed of contours or outlines are unstable
and difficult to learn.

Figure 3.2: Images of giraffes (left) and bottles (right), and their corresponding outlines
(adapted from [54])

Figure 3.3: Contours are sensitive to perturbations [4]

To make the representations stable, object structure needs to be described in a way that
would capture the global shape while being immune to transformations. Shape skeletons
are a class of models capable of doing this.

3.3 Shape Skeletons

Shape skeletons represent a shape through its medial axis - the set of centers of circles
that fit into the shape maximally [25]. Medial axis is also defined as the set of points in
a shape equidistant from the shape boundary at least two boundary points [11]. Medial
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Figure 3.4: Medial axis skeletons are immune to perturbations [4]

axis-based skeletons are compact and low-dimensional, making them easy to learn, and
consequently, suitable for few-shot learning.
Experimental research also supports the prominence of skeletal structures in perception.
Recordings from the early visual cortex [38] reveal that it computes and represents medial
axes of shapes, and that it is possible to decode skeletons from IT cortex activity [29].
When looking at Gabor patches, human subjects display greater contrast sensitivity when
the patches are close to the shape’s medial axis [33]. Additionally, they are able to recognize
images despite changes in components as long as the medial axes stay the same. Shape
skeletons have been used extensively in computer vision research as well [39][48]. Human
performance on superordinate classification tasks is well-explained by Bayesian classifiers
that use skeleton parameters [56]. Trinh and Kimia’s skeleton-based model [54] performs
segmentation and classification tasks accurately and is invariant to simple transformations.
But modern recognition models rarely use skeleton information, relying instead on feature
extraction [35]. This non-usage does not seem detrimental to their performance - as we
saw in section 3.2, they closely match behavioral and neural responses. Ayzenberg &
Lourenco [4] addressed this dichotomy and compared a model of skeletal similarity with
the Gabor-Jet model, GIST, HMAX, and AlexNet, finding the skeletal model to be most
predictive of human judgments.

3.3.1 Pruned Medial Axis Models

A typical medial axis structure, called the medial axis transform (MAT), is hierarchical,
composed of a parent branch and several secondary branches growing off it. The parent
captures the shape’s global geometry, and its children describe local variations. MAT, just
like contours, is sensitive to subtle shape changes. Even a minor alteration can cause the
formation of additional secondary branches in an MAT skeleton (Figure 3.5).
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Figure 3.5: (a) A rectangle and its medial axis skeleton (in blue).
(b) A nook in the rectangle causes the formation of secondary branches

Adapted from [23]

In an alternative known as the Pruned Medial Axis Model, the skeleton is made simpler by
pruning away some branches and preserving only those that describe the object’s overall
shape. As expected, pruned models are more stable across perturbations than non-pruned
ones. Human responses on behavioral tasks are best fit by models that prune the medial
axes in some way [3] [33]. Therefore, in our work, we employ simplified shape skeletons
to represent natural objects and expect that skeletal representations will be invariant to
rotation, scaling, and translation.



Chapter 4

Bayesian Program Learning

In the previous chapter, we brought up three significant drawbacks of artificial recognition
systems - they are unable to generalize without extensive training, they are outperformed
by humans, and they fail gracelessly. We also claimed (in Chapter 1) that one of the
primary reasons for these drawbacks is that visual features alone are not discriminative
enough. Further, we posited a new feature – motor programs (descriptions of how objects
are drawn). In this chapter, we present the Bayesian Program Learning framework [37],
which we used to infer motor programs given images.
Programs are collections of steps that can be combined recursively to generate concepts 1.
In Bayesian Program Learning, programs are probabilistic and compositional sequences
that produce drawings of visual concepts. Their probabilistic nature and compositionality
allow them to learn from limited data, generalize their knowledge to unseen examples, and
possess a human-like inductive bias. It is worth mentioning here that the original BPL
framework was trained on the Omniglot dataset (Figure 4.2) that contained drawings of
letters from different scripts. However, the context in which we deploy it in our work (i.e.,
drawing medial axis skeletons of natural images) is significantly different. This difference is
a possible reason for BPL’s inability to create unique motor representations for our images
(discussed further in Chapter 6). In the following sections, we briefly describe BPL’s
components and present it as a robust candidate for few-shot representational learning.

1See [21] for a more formal treatment of programs
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Figure 4.1: Generating types and tokens of concepts from primitives. The algorithm
samples numbers of parts and subparts, and combines sub-part sequences according to
spatial relations to form types. Motor variance and start location variability are intro-
duced to form tokens of types. Source: Lake, Salakhutdinov, Tenenbaum (2015). [37]

4.1 Bayesian Program Learning

The BPL framework, at its core, is composed of learned primitives. Primitives form
sub-parts, which, in turn, combine to form parts. Parts are joined together according to
spatial relations to create types of concepts (such as A, B, ball, cat). Each concept type
is represented as a lower-level generative model. The lower-level model employs noise and
motor variance to create many exemplars (called tokens) of each type.

4.1.1 Training

The Omniglot dataset contains handwritten characters from 50 scripts that were split
in a 3:2 ratio for training and evaluation, respectively. Hyperparameters for primitives,
start positions, spatial relations token variability, and image rendering were learned during
training.
As mentioned previously, primitives are the atoms of BPL. They are simple curves that
can be combined to form bigger and more complex entities. Each primitive has five unique
features - an identification index z, hyperparameters of a Gaussian distribution (µ, σ; used
while generating character types), and hyperparameters of a Gamma distribution (α, β;
also used while generating character types).
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Figure 4.2: The Omniglot dataset consists of handwritten characters from various
scripts

In the dataset, each drawing consisted of strokes (sequences between the pressing down and
lifting up of the pen) that were split further into sub-strokes (sequences separated by short
pauses of the pen). Sub-strokes were normalized in time and space, fit with a spline, and
represented by five control points (in R10) each. After using a diagonal Gaussian Mixture
Model to partition sub-strokes into primitive elements, hyperparameters (z, µ, σ, α, β) for
each primitive were inferred using Maximum Likelihood Estimation.
The image plane was discretized and a multinomial grid model was fit to learn stroke start
positions. Four kinds of spatial relations (independent, along, start, end) were learnt by
assuming temporary values of parameters and refitting the model. Finally, to learn image
parameters, the centre of mass and range of inked pixels was computed. Each character
image was transformed such that its mean and range matched the group average of all
images for that character. Maximum Likelihood Estimation was used to estimate the ink
hyperparameters (a, b) for image drawing.

4.1.2 Motor Program Inference

BPL follows a bottom-up inference method to produce a large set of possible motor pro-
grams, which can be refined using optimization and MCMC.

4.1.2.1 Image Thinning

Inference begins with thinning the input image to 1 pixel width. The lines and forking
points of the thinned image act as edges and nodes of an undirected graph.
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Figure 4.3: Primitives extracted during training the BPL model. The circles represent
control points. The first control point is filled with black. Source: Lake, Salakhutdinov,

Tenenbaum (2015). [37]

4.1.2.2 Random Walk

Each parse of the input image is created by taking a random walk over it until all the
edges have been traversed at least once. The number of parses that can be generated in
this manner grows exponentially with the number of edges, so the random walks are made
to be biased. During a walk, the probability of an action A being chosen is proportional
to the local angle θA around the stroke such that actions that minimize θA are preferred
(Figure 4.5).

P (A) ∝ exp(−λθA) (4.1)
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Figure 4.4: (Left) An image thinned to 1 pixel width. (Middle) Imperfection in detection
of forking points can lead to multiple points in close vicinity. Maximum circle criterion
(illustrated as a shaded circle here) is applied to forks to correct this. (Right) Forking
points are merged to produce the final thinned image. Source: Lake, Salakhutdinov,

Tenenbaum (2015). [37]

Figure 4.5: When the random walk proceeds from top in the direction of the arrow, it
can proceed in three ways: In (a), the local angle is zero degrees. In (b), it is 28 degrees,

and in (c), it is 47 degrees. Source: Lake, Salakhutdinov, Tenenbaum (2015)[37].

Once the parse has been created, the strokes in it are smoothed and divided into sub-strokes
using a greedy search. The substrokes are classified as primitives zi and the decomposition
is scored by a generative model for strokes. The best K models are then optimized, fine-
tuned, and returned as output.



Chapter 5

Experiments and Results

So far, we have seen how machines and humans are different and how current Machine
Learning techniques of few-shot learning (such as data augmentation) are centered around
creating more data from existing data points, and not on the learning process itself. We
believe that this is the reason for the graceless failure [1] of recognition algorithms.
For improved learning of representations, we presented shape skeletons as the ideal, gener-
alizable feature. Skeletons capture the overall geometry of shapes and are not affected by
local contour changes, 2D rotations, or scaling. But comparing skeletal similarity in the
visual space leaves room for error and inefficiency. We also proposed that skeletons should
not be compared on the basis of how they look, but how they are drawn. Our expectation in
doing so is that higher motor similarity correlates with higher perceived visual similarity.
However, motor similarity metrics for geometric structures are non-existent in the current
literature. In the following sections, we present and summarize the metrics we defined and
the analyses we performed using them.

5.1 Data

We prepared a dataset consisting of 50 natural object categories. We used CIFAR-10[34],
CIFAR-100[34] and ImageNet[13] to obtain category labels (Appendix A) and sourced
exemplar images from the internet.
For each exemplar image, we created 10 transforms - 4 rotational (rotated in 2D), 4 scalar,
2 combined (both rotational and scalar)(see Figure A.2). Then, we applied a medial axis
transform to each transformed image to obtain its skeleton. 13 categories were excluded
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from further analysis due to the skeletons being too simple (straight lines) or too complex.
In total, we had 10 skeletons per category, resulting in a cumulative of 370 skeletons.

5.2 Analyses

We used the BPL framework to infer motor programs for skeletons and obtained stroke-
wise coordinates as outputs. As mentioned earlier, the primary challenge was that of
representing these visual drawings in motor space. Our first approach involved capturing
the drawing process in the form of motor program IDs.

5.2.1 Program ID

We identified and indexed six functions in the BPL framework that, in our opinion, formed
the core of the drawing process. These functions were:

1. pts_on_new_edges: Make a list of points that can act as potential start locations
for drawing

2. pen_up_down: Put the pen down at an unvisited edge

3. pen_simple_step: Make a simple move

4. pen_angle_step: Select a move based on angle from the current trajectory

5. angles_for_moves: Compute the angle between current trajectory and each possible
move

6. action_via_angle: Pick the next move depending on the angle computed. Move
probability proportional to e

−λθ
180 .

The idea was that these functions would represent not the drawing, but how it had been
created (Figure 5.1). We stored the order in which these functions had been called (and
the angle chosen by BPL) and put them together to form motor IDs for all the skeletons.
Some exemplar motor IDs are as follows:

• 21345[1.2074e-06]621345[45]645[45]6213

• 21345[29.7449]645[45]645[40.6013]621345[29.7449]645[45]621321345[29.7449]
621345[40.6013]6
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Figure 5.1: Drawing the letter ‘T’. (A) The model samples start points for a stroke
(in black) and selects one randomly (in yellow). (B) The pen is put down and a move
is made. (C) The model compares all possible successive moves and selects the most

probable move. The process is repeated till the completion of drawing.

• 21345[7.1250]645[0]645[45]645[45]621345[45]621321345[45]621345[45]645[45]
621345[0]621345[45]621345[0]645[7.1250]645[45]621321345[45]645[45]621
345[0]645[45]6213

Once represented in this manner, motor programs could be compared easily through their
IDs. Similar skeletons would be drawn in a similar way, leading to identical IDs. To test
this, we calculated the similarity distance between each pair of IDs.

Similarity = lev + ang (5.1)

• The Levenshtein distance between two strings is the minimum number of single-
character mutations (insertions, deletions or substitutions) required to make them
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identical[43]. For two strings a and b,

leva,b(i, j) =



max(i, j) min(i, j) = 0

min


leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai ̸=bi)

otherwise
(5.2)

where i and j are the terminal character positions of a and b, respectively.

• The angle distance is the Euclidean distance between two corresponding angles.

ang =
Σ(angle1− angle2)

min(n2, n1)
(5.3)

Figure 5.3 shows a 370 x 370 matrix where each cell represents the distance between two
IDs. Each row displays how similar a single skeleton is to all others. We expected intra-
category distances to be smaller than inter-category distances. That is, distances along
the diagonal should have been lesser than distances farther away from the diagonal. But,
as can be seen, this was not the case.

5.2.1.1 Discriminability of Program IDs

To test whether program IDs were discriminable at all, we reverse-engineered drawings
from IDs (Figure 5.4). Note that the drawings were not recreations of the original skeletons,
but we expected them to be visually distinguishable. We tested discriminability using a
pre-trained nearest neighbours model. For each category, we chose a transformed image
of the object and used the model to compute similarity distance between our chosen
image and other images of the same category (Within-Category Image Distance). We
also computed similarity between the image’s skeleton and other skeletons of the same
category (Within-Category Skeleton Distance), and between the image’s ID drawing and
other drawings of the same category (Within-Category Drawing Distance). Figure 5.5
shows the distances for an exemplar category. We repeated this process for between-
category comparisons. Figure 5.6 shows Between-category Image, Skeleton and Drawing
distances. On an average, for within-category comparisons, distances between skeletons
matched distances between the original images more closely than the distances between
ID drawings. Between-category image similarity did not correlate reliably with skeletons
or drawings.
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Figure 5.2: Computing similarity between Program IDs
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Figure 5.3: Program ID similarity matrix for 37 categories. Each row shows the Lev-
enshtein distance between a single skeleton and 370 others.

Figure 5.4: Drawings created from motor program IDs
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Figure 5.5: Within-Category visual distance between (A) images and skeletons, and (B)
images and drawings. Image-Skeleton distances smaller than Image-Drawing distances.

Figure 5.6: Between-category visual distance between (A) images and skeletons, and
(B) images and drawings.

Hence, we concluded that program IDs were not informative enough to distinguish between
objects within and across categories.

5.2.2 Grid Representations

In our second attempt, we used the stroke-wise coordinates provided by BPL to create
invariant numerical representations. We visualized the drawing space as a 5 X 5 grid and
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Figure 5.7: Drawing space divided into a 5 x 5 grid. Stroke 1 illustrated in blue and
Stroke 2 in red.

represented strokes vis-a-vis their location on the grid. We did this as follows (See Fig 5.7
for an example):

1. Row ID: We indexed the rows on the grid from 1 to 5 and for each stroke, we
replaced each y-coordinate with the index of the row it lay in.

2. Column ID: We indexed the columns from 1 to 5 and for each stroke, we replaced
each x-coordinate with the index of the row it lay in.

3. Primitive ID: We classified each stroke as a straight line (denoted by ‘L’) or a curve
(denoted by ‘C’).

We calculated Levenshtein distance separately for the row, column and primitive IDs, and
computed the overall similarity as the mean of the three (see Figure 5.8 for example). Once
again, we expected a significant difference between the intra and inter-category Levenshtein
distances. The results looked more promising than the last time - we saw low distance
throughout the diagonal. However, the distances did not seem to increase as we moved
away from the diagonal. We took each image’s 9 nearest neighbours and counted how
many belonged to the same category as the image1. We found that for most images, a
larger proportion of neighbours were from other categories 5.10. Therefore, we concluded
that grid representations are not capable of object category discrimination, either.

1Because we were working with 10 images per category, in an ideal scenario, all of the 9 nearest
neighbours would have been from the same category
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Figure 5.8: Grid Similarity: We computed the Levenshtein Distance between the Row,
Column and Primitive IDs, and averaged the three to obtain the distance between skele-

tons.

5.2.3 Adjacency Matrices

Instead of capturing the process of drawing skeletons, we sought to describe the skeletal
structure itself. To make these descriptions invariant, it was imperative to find a repre-
sentation system that did not rely on coordinates.
An adjacency matrix is a square matrix, wherein the elements indicate whether two ver-
tices are connected to each other. For each skeleton in our dataset, we used BPL to
represent connections between nodes in the form of undirected adjacency matrices and
calculated dot products between all pairs of matrices.
Transforming images does not change the number of nodes and their placement in the

skeletons. It is, however, possible for nodes to get interchanged (as in Figure 5.11), which
further causes rows and columns of the matrix to change. To account for that, we per-
formed row and column permutations on the matrices before calculating the dot product.
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Figure 5.9: Distances between grid representations of image skeletons

Overall, the process was as follows:
For each pair of matrices (called M1 and M2)

1. Check if both are equal in size

(a) If they are, proceed.

(b) Else, let B and S (B,S ∈ [M1,M2]) be the bigger and smaller matrices, respec-
tively.
Let max_product = 0 and N = Length(S). For each N X N subset of B:

i. product = subset · S
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Figure 5.10: Proportion of nearest neighbours that belonged to the same category as
the reference image was lower than those that belonged to a different category

ii. If product > max_product, max_product = product and B = subset

iii. Else, proceed

2. Normalization Factor NF = Sum(M1) + Sum(M2)

3. For Pi in P = [P1, P2, ...] where P : set of all possible permutations of M2, compute

M1 · Pi

NF

4. Store the largest normalized dot product

As a first-pass analysis, we repeated this process for 4 categories. Dot products of adja-
cency matrices are illustrated in Figure 5.12. The algorithm involved computing N * N

permutations for each matrix with N rows and N columns. As N crossed 8, permuting
rows and columns turned into a computationally expensive process.

5.2.3.1 Depth-First Search

To reduce the size of the permutation search space, we introduced a Depth-First Search
mechanism into the algorithm.
For each pair of matrices M1 and M2:
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Figure 5.11: (Top) Sample adjacency matrix. (Bottom) Interchanging nodes changes
the matrix.

1. Adjust size like before

2. Define a threshold value, T ∈ [0, 1]

3. Let P be the set of possible permutations of M2. P = [P1, P2, ...]. For each Pi:

(a) Di = M1 · Pi

(b) If Di ≥ T

i. Find rows and columns which are identical between M1 and Pi

ii. Keeping the identical rows and columns fixed, continue to permute the
non-identical rows and columns

iii. Compute dot product for each permutation
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Figure 5.12: Adjacency matrix similarity. Values along the diagonal represent intra-
category similarity, while those off the diagonal represent inter-category similarity. Intra-
category similarity appears to be higher than inter-category similarity in Category 3, but

this is not the case for Categories 1 and 2.

iv. D = largest dot product
v. Break

(c) Else if Di < T , store Di and move to next Pi

4. D = max([D1, D2, ...])

With a threshold value of 0.8, we were able to reduce the computational complexity to
some extent. Figure 5.13 shows the dot products obtained through our DFS algorithm as
a similarity matrix. The difference between intra-category and inter-category dot products
did not appear to be significant, leading to the conclusion that adjacency matrices alone
were not useful for category discrimination.
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Figure 5.13: Adjacency matrix similarity computed after Depth-First Search

5.2.4 Adjacency Matrices and Edge Lengths

To make matrices more informative, we added relative stroke length information to the
representations. For each matrix, we normalized stroke lengths and rearranged node in-
dices according to decreasing length order (Figure 5.14). After the rearrangement of nodes
(and consequently, the adjacency matrices), we computed dot products as before. We did
not observe any significant improvements over previous analyses. Next, we did a compar-
ative reassignment of node identities. Instead of rearranging matrix nodes independently
for each matrix, we did the following. For a reference image I1 (matrix M1) and test image
I2 (matrix M2):
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Figure 5.14: (A) Reference image. Lengths are displayed adjacent to edges, node indices
are displayed in red. (B) Normalized stroke lengths. (C) Nodes rearranged in order of

decreasing length.

1. Normalize stroke lengths in I1 and I2

2. Let T1 and T2 be the terminal nodes in M1. Rename the terminal nodes in M2 to
T1 and T2.

3. Let L1 and L2 be the nodes connected by the longest stroke in I1. Rename the nodes
associated with the longest stroke in M2 to L1 and L2.

4. Repeat step 3 for the shortest stroke.

5. Identify unused node indices from M1 and unnamed nodes in M2. Assign the indices
to the nodes.

6. For nodes that have multiple possible indices, create permutations of M2 for each
possibility. For each permutation, compute the dot product as before and store the
largest dot product.

Although this method reduced the permutation search space significantly, it presented
challenges in comparing complex images. Results with a small subset of categories did not
show any improvement over previous results.

5.3 Interpretation

Defining a coordinate-agnostic representation that captured how skeletons were drawn was
the first and foundational goal of our analysis. To that effect, we experimented with three
candidates - program IDs, grids, adjacency matrices.
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The first, program IDs, were not discriminative. A potential cause of this is the simplifica-
tion of the drawings. We had selected six functions, while in reality, the drawing process
was much more complicated. Increasing the amount of information in program IDs could
take them in the direction of improved discrimination.
The second, grid-based representations, failed because they were not coordinate-agnostic.
The third, adjacency matrices, did not capture the drawing process but the skeletal struc-
ture. Two skeleton matrices could be made to look the same by permutation, as long as
they had the same number of nodes and edges. Factoring in the extent of permutation
could improve the analysis.
However, in our opinion, the bigger problem lay in the inference of motor programs. The
BPL framework, in its current form, knows how to write alphabets. But the primitive
structures involved in writing alphabets are significantly different from those involved
in drawing skeletons. As a result, BPL’s inference does not reflect human drawings accu-
rately. There is also degeneracy in the inference, meaning that the program infers different
drawings for the same image. In order to truly capture how humans would draw these
images, BPL should be retrained on a more appropriate dataset.
In conclusion, although our representations failed to discriminate between categories in
their current form, we believe it is a technical failure rather than a theoretical one, and
technical improvements can produce successful discriminatory behavior.



Chapter 6

Conclusion and Discussion

We began this report by discussing artificial object recognition and how it is different
from its human counterpart. We aimed to bring the two closer to each other. In an ideal
world, we would know how humans recognize objects and replicate the process in synthetic
systems. Unfortunately, our knowledge of biological recognition is limited. An intuitive
way to look at recognition is through the lens of representations and concepts. We store
concepts in our minds/brains, represent incoming information in a format similar to that
of concepts, and compare the two. What could this ‘standard format’ be? We looked
at several candidates - imagery, symbols, neural activations - and settled on structural
descriptions. The fundamental difference between our formulation of structure and the
traditional one is this - traditional approaches describe object structures visually while we
described them in terms of motor affordance.
We created motor representations of visual objects wherein we described how humans drew
the objects (we called these descriptions ‘motor programs’). To compare motor programs
and compute the similarity between objects, we defined and tested three metrics. We have
already discussed these metrics in detail in the previous chapter. The critical thing to note
here is that there are two ways to interpret our hypothesis - the ‘hard’ interpretation is an
embodied take on visual perception. It claims that the brain infers motor programs and
compares them. That is not the interpretation we tested in this work. We tested the ‘soft’
interpretation that a motor affordance-based representation can improve artificial object
recognition. Although our experiments did not support this, we did not interpret it as
a falsification of the hypothesis itself. If the hypothesis is true, it can lead to questions
about whether different representations can produce the same behavior and, conversely, if
cognition (or at least some part of it) is representation-invariant, after all.
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Appendix A

Data

A.1 Category Labels

Category labels were taken from 3 datasets.

A.1.1 CIFAR-100

Baby, Man, Whale, Dolphin, Shark, Trout, Tulip, Sunflower, Bottle, Plate, Pear, Mush-
room, Telephone, Television, Chair, Table, Cockroach, Butterfly, Snail, Bear, Wolf, House,
Mountain, Camel, Chimpanzee, Kangaroo, Raccoon, Fox, Spider, Crab, Lizard, Turtle,
Crocodile, Rabbit, Mouse, Squirrel, Tree, Bus, Bike, Rocket, Lawn-mower

A.1.2 CIFAR-10

Cat, Bird, Kite, Frog

A.1.3 ImageNet

Hornbill, Guitar, Hen, Snake, Umbrella
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Figure A.1: Dataset preview

Figure A.2: Images (left column) were binarized, inverted and transformaed (middle)
and then skeletonized (right).

A.2 Transformation and Skeletonization

We removed all background information from the images such that only the object was
visible in the picture. Then, we inverted and binarized all images.
For rotational transforms, we chose a rotation parameter θ ∈ [0, 360] randomly. For scalar
transforms, we chose a scaling parameter s ∈ [0.5, 2] randomly. After transformation, we
skeletonized the images using Zhang’s Method[58] (Figure A.2).
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