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Abstract

Research in decision-making has recently begun to empha-
size predictive accuracy as the dominant principle for design-
ing and evaluating choice models. This emphasis has led to
the development of increasingly more precise models of hu-
mans’ risk preferences, as measured in certain experimental
paradigms built upon certainty equivalence testing. In this
paper, we argue that the level of precision attained by recent
choice models is unexpected, because human preferences are
irreducibly noisy. We support this argument by conducting ex-
periments to measure intra-observer consistency in choice be-
havior in two common risk preference paradigms: decisions
from description and experience. We find that while current
choice models of decisions from experience align fairly well
with the upper limits of choice consistency seen in our experi-
mental data, choice models for decisions from description are
significantly more consistent with humans’ choices than the
humans themselves are consistent with their own choices. We
discuss some theoretical and practical implications of our re-
sults.
Keywords: risk preferences; predictability; decisions from ex-
perience; choice modelling

Introduction
The certainty equivalence paradigm for measuring risk pref-
erences is one of the workhorses of behavioral economics re-
search (Farquhar,1984). A typical certainty equivalence task
seeks to elicit the lowest certain amount that someone might
prefer over a given risky gamble. Beginning with Erev et al.
(2010), variants of this task have been developed and studied
using recurring choice prediction tournaments. The primary
ambition of these tournaments is to potentiate the develop-
ment of models that can make accurate quantitative predic-
tions for risky choice behavior, including the reproduction of
classic anomalies previously reported in the behavioral de-
cision theory literature (Erev, Ert, Plonsky, Cohen, & Co-
hen,2017).

While models of human decisions have historically been
assessed using a mix of qualitative insights and quantitative
tests, prediction tournaments have focused on making quan-
titatively precise predictions to the exclusion of other pos-
sible criteria for assessing the feasibility of models (Erev
et al.,2017). Tournaments are conducted by allowing teams
to fit choice models to human choices made on some cer-
tainty equivalence problems, and winning models are identi-
fied as the ones that most accurately predict human choices
for a different set of problems. This paradigm aligns quite
well with how supervised classification algorithms are trained

from data (Bishop,2006). Perhaps as a consequence, machine
learning models are now both competing and collaborating
with theory-driven models in more recent prediction tourna-
ments with excellent empirical success (Bourgin, Peterson,
Reichman, Griffiths, & Russell,2019).

The empirical success of this research program, given its
pure predictive emphasis, is measured in terms of the cor-
relation of model predictions with human choices. Choice
models developed through these tournaments have gone from
explaining about 70% of the variance in human choices, as
in the baseline models used in Erev et al. (2010) to explain-
ing more than 90% of the variance in human choices, as in
the BEAST model presented in (Erev et al.,2017). Machine
learning models built using features identified as important
by BEAST are able to approach test set values even more
closely (Bourgin et al.,2019).

However, this empirical success is more than a little
surprising, given the irreducibly stochastic nature of risky
choices (Bhatia & Loomes,2017). If someone asks you to
either pick 20 tokens of cash for certain or a gamble that will
pay 100 tokens 20% of the time, it is very likely that your re-
sponse may vary across multiple elicitations (Luce, Suppes,
et al.,1965). Thus, if someone uses one of these elicitations
to construct a dataset to fit a theory of decisions under risk,
one would expect that the theory would not be complete. In
plain language, given the intuitively fickle nature of human
choices, can we actually expect choice models to predict them
so well? This is the question we ask and try to answer in this
paper.

How predictable are risky choices?
Recent research allows us to also pose the puzzle of the ul-
timate predictability of risky choices more formally. Work-
ing within the framework of supervised rule learning from fi-
nite features, Fudenberg, Kleinberg, Liang, and Mullainathan
(2019) frame the question of completeness as asking how
close the performance of a given predictive model is to the
best predictive performance achievable in a particular do-
main. They propose a clever formalism to measure complete-
ness for a class of models F trying to map observations X to
prediction labels Y as

C(F ) =
ε( fnaive)− ε( fmodel)

ε( fnaive)− ε( fideal)
, (1)
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where ε(·) is prediction error, fnaive is a random predictor,
fmodel is a properly estimated parametric model trained on the
data, and fideal is the unparameterized set of mappings from
X to Y that minimizes the error on the training dataset. The
core idea behind completeness is that it tries to differentiate
the portion of error that might exist because of model mis-
specification from the irreducible portion that exists because
of stochasticity in the data.

As a demonstration, Fudenberg et al. (2019) estimate com-
pleteness on a large dataset containing 8906 certainty equiv-
alence responses elicited from 179 subjects (Bruhin, Fehr-
Duda, & Epper,2010) and show that cumulative prospect the-
ory (Tversky & Kahneman,1992) is 95% complete as a model
of such choices. That is, models given access to the same
feature set as CPT (payoffs, probabilities) can at best hope to
achieve a 5% improvement in prediction error beyond a prop-
erly estimated CPT model on certainty equivalence tasks. A
similar analysis was conducted for Technion Estimation (TE),
Technion Competition (TC) and our own dataset for Decision
from Description (DFD) and they were found to be respec-
tively 93%, 91% and 98% complete.

This expectation is in stark contrast with the results seen
in prediction tournaments. In the very first prediction tour-
nament, a logistic regression model was able to reduce pre-
diction error on the test set by close to an order of magnitude
(CPT: 0.084, LR: 0.013) (Erev et al.,2010). The regression
model uses only the information presented in the bare de-
scription of a certainty equivalence problem - the tuple {H,
M , L, p}, indicating respectively the high, medium and low
payoffs, and the probability of obtaining the high payoff, re-
spectively. While the CPT model could explain 70% of the
variance in the test set responses, the LR model could explain
nearly 90%.

So we have a mystery. Statistical estimates of irreducible
variability of risky choices suggest that simple CPT-style
models are close to the limits of predictability for risky
choices (Fudenberg et al.,2019), explaining about 70% of the
variability in respondents’ choice behavior (Erev et al.,2010).
Yet empirical performance in prediction tournaments has ex-
ceeded CPT performance by an order of magnitude, incen-
tivizing the development of increasingly elaborate models of
risky choice (Plonsky et al.,2019). Either the statistical esti-
mates are mistaken, or the prediction tournament results are
suspect.

In this paper, we report results from a pair of simple experi-
mental studies seeking to unravel this mystery. To obtain a di-
rect empirical upper bound for predictability of risky choices,
we ask how well observers’ behavior when presented with
a particular choice problem predicts the same observers’ be-
havior when presented with the same choice problem again,
controlling for memory-based consistency effects. In effect,
we have experiment participants act as models of choice for
their own behavior and see how well this model does, as mea-
sured by standard metrics used in choice prediction tourna-
ments.

Method
Design
A set of expectation-matched risky choice problems were pre-
sented to each participant, at a gap of at least a week over the
course of three weeks, following the protocol schematized in
Figure 1. Two experiments were conducted, testing for choice
consistency in decisions from description and experience re-
spectively.

Figure 1: Experiment Design For each participant, problem
space is randomly divided into four equal subsets.Half of the
problems presented in Week 1 are repeated in Week 2 (subset
A), and the other half in Week 3 (subset B). Week 2 and 3 re-
peated problems are interspersed with remaining fresh prob-
lems (subsets C and D).

In each experiment, as shown in Figure 1, each participant
solves 30 problems per week, with half the problems seen
in Week 1 being repeated during Week 2, and the other half
repeating in Week 3. Throughout this paper, we refer to the
first instances of problem presentation for a given participant
as fresh problems, while second presentations will be called
repeated problems.

The problem space used in our experiments is the Estima-
tion set in the first Technion Choice Prediction Tournament
consisting of 60 problems (Erev et al.,2010). We hosted the
experiments online and participants were able to participate
at their convenience. Participants were recruited from the IIT
Kanpur campus where the study was conducted. Email re-
minders were sent every week to all participants. The study
protocol was reviewed and approved by an IRB.

Decisions from Description
In decisions from description (DFD), for each problem,
participants were asked to choose between risky and safe
choices, given explicit payoff and probability descriptions.
Participants responded to 30 unique problems each day, with
each problem presented only once on any given day. Problem
order was randomized across participants, and within partici-
pants for repeat presentations as indicated in Figure 1.
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A total of 58(19 female,39 male) participants completed
the experiment, without compensation. Following the proto-
col used in Erev et al. (2010) we presented no outcome feed-
back following choice selections. However, feedback was
provided for one of the randomly selected problems at the
end of each day of the experiment as a notional payoff.

The one-shot DFD paradigm used is identical to the one
used in Erev et al. (2010). This also parallels other large-scale
risk preference elicitation protocols (Bruhin et al.,2010).
However, subsequent prediction tournaments have used a
modified version of this paradigm. In these tournaments, par-
ticipants respond to a choice problem multiple times in the
same sitting, with the first few trials conducted without feed-
back, and the remaining trials conducted with feedback about
both payoffs received and foregone after each choice (Erev et
al.,2017;Plonsky et al.,2019;Bourgin et al.,2019).

Choice Models In the Technion competition, the interest-
ing baseline model is Cumulative Prospect Theory (CPT)
given by Tversky and Kahneman (1992) suggesting that the
decision makers choose the prospect with the highest subjec-
tive probability weighted value.

As we mentioned above, the winner of the first DFD tour-
nament was a logistic regression model (Erev et al.,2010).
The logistic choice rule predicts the proportion of risky
choices based on a linear relationship with the predictor vari-
ables - which in this case were the parameters of the problem
and the expected value difference.

A special model has been designed for the special
paradigm of decisions from description with feedback (Erev
et al.,2017). This complex model attempts to computation-
ally unite dynamic expected utility estimation with stochastic
implementations of four cognitive biases. The resulting Best
Estimate and Sampling Tools (BEAST) model was used as
a baseline model for the fourth and fifth prediction tourna-
ments, and has proved extremely difficult to beat, with tour-
nament winners being mostly minor variants of BEAST, and
performing statistically identically (Erev et al.,2017;Plonsky
et al.,2019).

Decisions from Experience
In decisions from experience (DFE), we instantiated the
sampling condition of the Technion tournament (Erev et
al.,2010). A total of 25 male and 22 female participants com-
pleted the experiment. The experiment was presented to the
participant as a series of games representing each problem -
the parameters of which were derived from the problem space
as described above. Instructions were followed by two prac-
tice games which were played under the guidance of the ex-
perimenter to ensure that the participant understood the game.
The actual experiment started after the participant consented
to continue the experiment, after playing the practice games.

For each game, the participant was able to view two buttons
corresponding to safe and risky choices respectively. In the
sampling stage, clicking on any one of the buttons, one at a
time, revealed one outcome for that option, sampled from a

Bernoulli trial corresponding to the conditions of the gamble.
These sampling trials were inconsequential, and participants
were free to sample as many times as they wanted. Once
they had sampled sufficiently many outcomes, they explicitly
indicated a desire to make a final consequential selection with
a button press. In this selection stage, they clicked on any of
the outcomes once, and this outcome was considered the final
outcome of the game. Participants were notionally randomly
incentivized, as in the DFD case.

Choice models The best baseline model for decisions from
experience in the first prediction tournament was a primed
sampler that draws ν samples from the gamble, where ν

is uniformly distributed from 1 to 9, and selects the option
which has the greater average value based on these sampled
values (Erev et al.,2010).

The winning model in this competition was an ensem-
ble model which makes decisions by sampling one of four
equally weighted decision rules (Erev et al.,2010). Of these,
the first decision rule is the baseline model as described
above. The second decision rule is a variant of the first rule
where ν is drawn from the observed distribution of sample
sizes in the observed data, upper-bounded at 20. The third de-
cision rule is a stochastic cumulative prospect theory model.
The final rule is a stochastic implementation of the priority
heuristic (Brandstätter, Gigerenzer, & Hertwig,2006).

Response Variables
For every problem presented in both paradigms above, partic-
ipants make a binary decision between a risky prospect and
safe prospect. Each participant’s response to each problem is
recorded. Additionally, the proportion of participants taking
the risky alternative for every problem is represented as the
problem’s Risky Choice Rate (R-rate). We record R-rates for
all problems in both decisions from description and experi-
ence.

Decisions from experience, however, involve another la-
tent decision of when to stop sampling. Measuring the con-
sistency of this additional decision is also potentially of in-
terest for informing models of information search within
the context of decisions from experience (Hills & Her-
twig,2010;Markant, Pleskac, Diederich, Pachur, & Her-
twig,2015;Srivastava, Muller-Trede, Schrater, & Vul,2016).
To this end, we also record the number of samples the deci-
sion maker takes before committing to a final choice (hence-
forth sampling duration).

Finally, in decisions from experience, an observer is pre-
sented with two choices that can altogether result in any of
three unique payoffs. Observers that terminate information
search before seeing each of the three possible outcomes at
least once will make their final choice without actually un-
derstanding the problem structure. The minimum number of
trials an observer would expect to make to see three unique
outcomes is three. So, to obtain a clearer view of on-task be-
havior in DFE, we also separately report our metrics for all
observations with sampling duration greater than 2.
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Measuring choice consistency
If risk preferences have low inherent stochasticity at the co-
hort level, we expect the R-rate (relative number of times the
risky option is selected by participants) for a problem to be
consistent across repeated elicitations. To quantify this con-
sistency, we compute the correlation between observed and
predicted R-rates across all tested problems. In the special
case of repeated problems, using the R-rates seen in the sec-
ond elicitation as predictors for the first week’s values yields
a simple consistency measure. This measure is additionally
attractive for offering a direct interpretation in terms of per-
centage of variance explained (Erev et al.,2010).

We also report the proportion of agreement PAgree, as cal-
culated in Erev et al. (2010), as an additional cohort-level
measurement of consensus in choices. This is set to 1 for a
problem if both predicted and observed R-rates are greater
than or less than 0.5; otherwise it is set to zero. We report
this value, averaged across all tested problems, in percentage
terms, following convention (Erev et al.,2010).

If risk preferences have low inherent stochasticity at the
individual level, we expect participant responses to the same
problem to be consistent across repeated elicitations. We
measure this individual-level intra-rater reliability using Co-
hen’s κ (Landis & Koch,1977). For our context with agree-
ment to be measured only for binary choices, this is simply

κ =
po− pe

1− pe
,

where po is the number of consistent choices made by an indi-
vidual across all repeated problems divided by the total num-
ber of choices made by that individual during any one presen-
tation of these problems and pe is the probability of random
agreement, calculated using the base risky choice proportions
calculated within participants. We report median intra-rater
reliability across participants, unless stated otherwise.

Results
In all analyses reported below, we refer to our data sources
as follows. Data collected in our experiments are denoted
as coming from RR (Repeated Risk). Data from the train-
ing datasets from the first Technion tournament will be re-
ferred to TE (Technion Estimation), and from the competition
datasets from the same tournament as TC (Technion Compe-
tition). We use both DFD and DFE datasets from all these
data sources. Data from the mixed paradigm used in Erev et
al. (2017) will be referred to using EEP.

Predicting choice proportions
Decisions from description Table 1 summarizes consis-
tency metrics calculated for our DFD experiment’s data, pre-
sented alongside human-model consistency metrics calcu-
lated on our data as well as reported previously on existing
datasets. Three observations stand out as particularly salient.

First, when we use the cohort’s R-rate calculated during re-
peated presentations of problems to predict their own R-rate

during the first presentation of the same problems, we obtain
correlations ranging between 0.67-0.78 and proportions of
agreement ranging between 78%-85%. Notably, these values
are much lower than corresponding values previously found
for model-data comparisons, even for baseline models like
cumulative prospect theory (Erev et al.,2010).

Second, the baseline model does not perform expectedly
well when we tested it on our data, yielding correlation and
agreement proportions of 0.57 and 81% respectively. The
problems used in our DFD experiments were identical to the
ones in the TE dataset, and we applied the model using pa-
rameters estimated on the TE dataset (reported in Erev et
al. (2010)). Thus, the large difference between the model’s
performance on the TC dataset and ours is surprising, and
warrants further investigation.

Third, very little individual level intra-level agreement is
seen across participants (Landis & Koch,1977), with κ= 0.25
in both repeated sets. This is in contrast with the baseline
model, which agrees with the human choice data consistently
more while predicting the Technion data sets κ∈ {0.43,0.51}
than human choices in our dataset agrees with itself. To add
to the puzzle, when applied to our dataset, the model agrees
with the data about as much (κ = 0.23) as expected by the
empirical measurements.

Decisions from experience Table 2 summarizes consis-
tency metrics calculated for our DFE experiment’s data, pre-
sented alongside human-model consistency metrics calcu-
lated on our data as well as reported previously on existing
datasets.

The main observation here is that the range of human-
human correlations and agreement proportions seen in our
data includes the corresponding model-human measurements
reported on the competition set in Erev et al. (2010), though
not similar measurements seen on the estimation set. Since
the winning ensemble model in this tournament was not sig-
nificantly better than the simple primed sampler baseline, our
observation is consistent with the possibility that a simple
primed sampler model might be the best possible model for
predicting R-rates in the decision from experience task.

This possibility is also supported by an additional analy-
sis. In addition to the values reported in Table 2, we sepa-
rately calculated the intra-rater reliability of our participants
on the subset of problems where the expected value difference
between the observed practice sequences was almost identi-
cal (within 5% of the smallest payoff outcome in the dataset)
across the two presentations. In contrast with the fair to mod-
erate values κ ∈ {0.4,0.32} seen for the full set of problems,
we find exceptionally high reliability κ ∈ {0.73,0.78} on this
subset of problems across observers. That is, when the same
people observe the same expected value differences again,
they make the same choices, consistent with the decision cri-
teria of the simple primed sampler model. This finding also
offers a possible explanation for the gap between the empir-
ical and model κ seen in DFE. The baseline primed sampler
does not take observation history into account and so per-
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Table 1: DFD Analysis Choice agreement indicators to check the test-retest reliability between the repeated problems in the
first row. Remaining rows indicate similar analysis using different models as predictors on the observed data sources.
WM = Winning Model (Logistic Regression), BM = Baseline Model (CPT) (Erev et al.,2010), BEAST = Baseline Model (Erev
et al.,2017).
*claimed in (Erev et al.,2010). ** claimed in (Erev et al.,2017). ’ First Presentation of the problems.

Data Sources Subset Observed Predictor Correlation κ PAgree

RR A Week 1 Week 2 0.78 0.25 85%
B Week 1 Week 3 0.67 0.25 78%

RR Fresh A
′
, B
′
, C, D BM 0.57 0.23 81%

TE - TE BM 0.85∗ 0.43 95%∗

WM 0.92∗ 88%∗

TC - TC BM 0.86∗ 0.51 93%∗

WM 0.94∗ 90%∗

EEP - EEP BEAST 0.95∗∗ - -

forms worse than humans themselves in predicting their prior
choices.

Finally, as we note above, the decisions from experience
paradigm actually involves two decisions per problem pre-
sentation - an overt risk preference, and a latent information
search stopping decision governing when to stop sampling
and make a final choice. As shown in Table 3, human-human
correlations for sampling duration in repeated problems for
all observations is 0.64, dropping to 0.54 when only obser-
vations with sampling duration greater than two are consid-
ered. These values indicate reasonable upper bounds on the
predictability of sampling duration in decisions from experi-
ence.

Interestingly, this limit is approached by a recent trial-by-
trial sampling duration model that incorporates the influence
of expected value difference, order-dependent variability in
observation sequences, and the expectation of seeing all three
outcomes at least once before committing to a decision in
predicting sampling duration in such decisions from experi-
ence (Srivastava et al.,2016).

Discussion
We measured the test-retest consistency of response choices
in certainty equivalence experiments by correlating the
decision-related behavior for the same problem by the same
participant, separated by over a week in two standard risky
choice paradigms.

By doing so, we fulfilled two inter-related goals. One,
we obtained a direct characterization of the degree of natural
variability in human observers’ revealed preferences in cer-
tainty equivalence experiments as currently conducted, previ-
ously hinted at theoretically as in Bhatia and Loomes (2017),
or estimated indirectly as in Fudenberg et al. (2019). Two,
we establish predictive upper bounds for the expected accu-
racy of cognitively realistic models of humans’ risky choices.

For decisions from description, we found that participants’
own future choices predicted at most about 60% of the vari-
ability in their previous choices on the same choice problems,

and suggest this as a reasonable upper bound for achievable
prediction performance for realistic choice models of one-
shot decisions from description. We note that our measured
intra-observer choice consistency values are considerably
lower than model-human consistency achieved by contempo-
rary models of risky choice behavior (Erev et al.,2010,2017).
We find this unexpected excess predictability of choice mod-
els at both cohort and individual levels in tournament data
sets, but crucially, not in our own data.

The pattern of results seen in our DFD analysis appears
to be most consistent with the conclusion that earlier choice
models for such tasks have been subtly over-fit to the valida-
tion set, a problem endemic to prediction tournaments with
leaderboards (Dwork et al.,2015). Such a conclusion would
also resolve the mystery of over-performance beyond statis-
tical expectation for risky decisions from description calcu-
lated in Fudenberg et al. (2019).

For decisions from experience, we found that participants’
own future choices again predicted at most about 70% of
the variability in their previous choices on the same choice
problems. Unlike in the case of decisions from description,
we found substantial agreement in the variance in responses
captured by a primed sampler model presented in (Erev et
al.,2010) with our upper bound estimates, suggesting that the
primed sampler model is already close to optimal prediction
performance on this task. We also found additional evidence
supporting the use of an expected value difference criterion
for deciding such decisions from experience, further support-
ing the plausibility of the primed sampler as a near optimal
model of the DFE task.

How do these results affect the mixed paradigm of re-
peated DFD with feedback? We have shown that one-shot
DFD responses greatly separated in time have high variabil-
ity. It is unclear whether response variables collected in
the mixed paradigm will have lower variability (Plonsky et
al.,2019;Bourgin et al.,2019). It could, if the source of be-
havioral variability is short-term noise in the decision pro-
cess, but wouldn’t if the source of variability is longer time-
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Table 2: DFE Analysis Choice agreement indicators to estimate test-retest reliability between repeated problems in the first
row. Remaining rows indicate similar analysis using different models as predictors for observed choices. For each indicator,
we also separately report values for observations with sampling duration greater than 2.
WM = Winning Model (ensemble) and BM = Baseline Model (primed sampler with variability) in Erev et al. (2010).
*claimed in (Erev et al.,2010). ’First Presentation of the problems

Correlations κ PAgree
Data Sources Subset Observed Predictor All SD >2 All SD >2 All SD >2

RR A Week 1 Week 2 0.83 0.80 0.40 0.41 90% 85%
RR B Week 1 Week 3 0.73 0.71 0.32 0.27 88% 85%
RR Fresh A

′
, B
′
, C, D BM 0.84 0.83 0.23 0.25 92% 92%

TE - TE BM 0.88∗ - 0.25 0.25 95%∗ -
WM 0.92∗ - - - 95%∗ -

TC - TC BM 0.80∗ - 0.19 0.2 82%∗ -
WM 0.80∗ - - - 83%∗ -

Table 3: Sampling Duration Correlation for human
model. Correlation values are for each problem and partic-
ipant pair.

Dataset All observations SD >2
A 0.64 0.54
B 0.65 0.56

scale fluctuations in retrieval patterns from long-term mem-
ory (Beck, Ma, Pitkow, Latham, & Pouget,2012). We intend
to investigate this question in future work.
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