CSD101: Introduction to computing and programming (ICP)



Altering execution within a loop: break, continue

m The break statement is used inside the body of a loop to
immediately exit the loop.

m Control passes to the statement immediately after the loop.

continue

m The continue statement is used in the body of a loop when
the statements following the continue statement must not
be executed.

m So, control passes straight to the end of the loop. In a for
this means control will pass to the increment expression in the
for loop. In a while loop control will immediately pass to
the <condition>.



Arguments in functions |

m When a function is defined it can have 0 or more formal
arguments. A formal argument is a type and a variable.

Example 4

void printArray(int arr[], int start, int len){
/*prints array arr starting at position start
surrounded by square brackets [...]*/
printf("[");
for(int i=start;i<len;i+=1)
printf ("%d,",arr[i]);
printf ("\b]l");
return;




Arguments in functions Il

m When a function is called it is given actual arguments that
must be consistent with the formal arguments.
For example, if seq is an array of size 6 then
printArray(seq, 1, 6) is a function call.



Argument passing by value

m When a function is called each actual argument is evaluated
to yield a value and a copy of this value is bound to the
corresponding formal argument. Then the body of the
function is executed. This way of passing arguments to
functions is called pass-by-value. C passes all arguments by
value.

m Any change to the formal variable inside the function does not
affect its value outside the function since inside it is operating
on a copy. In particular it does not affect its value in the
function from where it was called.

m To make changes that are made inside the function visible
outside it an address has to be passed. This happens by
default when we pass an array. And that is the reason an
array passed as an argument reflects changes made inside the
function. This will become clearer after we discuss pointers in
more detail.



