
CSD101: Introduction to computing and programming (ICP)

Relational operators

Relational operator expressions return true (1) if condition holds,
or false (0) if it does not hold. C unfortunately, implements
booleans as just integers with 1 standing for true and 0 standing
for false. This is not the case for many later languages.
Operator Meaning Example

== Equal to a == b

! = Not equal to a! = b

> Greater than a > b

a < b Less than a < b

>= Greater than equal to a >= b

<= Less than equal to a <= b

Logical operators

The value returned is true (1) or false (0). e1, e2 are logical
expressions that evaluate to true or false.
Operator Meaning Example

|| Logical or e1||e2
&& Logical and e1&&e2

! Logical not !e1

Assignment operators

v is a variable and e is an expression that evaluate to a value
compatible with the type of v .
Operator Meaning Example

= Assignment v = e1, v is assigned value of expn e1,
returns value of e1.

+ = Abbr. assignment v+ = e same as v = v + e.

− = Abbr. assignment v− = e same as v = v − e.

∗ = Abbr. assignment v∗ = e same as v = v ∗ e

/ = Abbr. assignment v/ = e same as v = v/e

% = Abbr. assignment v% = e same as v = v%e. v is an int,
e evaluates to an int value.

Similar abbreviated assignment operators exist for bitwise operators. Bitwise
operators are discussed later.

Miscellaneous operators

e is a boolean expression evaluating to true or false. e1, e2 are
expressions. v is a variable. arr is an array variable.

Operator Meaning Example

e?e1 : e2 Conditional evaln e?e1 : e2 - return value of e1 if e
true else value of e2

& < var > Address of &v - address of variable v

∗ Contents of ∗v . where v is a pointer

< var > [] Array access arr [10] - Eleventh element in the
array arr

, Comma operator e1, e2 - evaluates e1 then e2 re-
turns value of e2

f (< arguments >) Function call f (a1, a2) - f a function, a1, a2
are arguments that evaluate to
compatible values

sizeof () Size of operator sizeof (v), sizeof (< type >) -
gives storage required in bytes

(< type >) < expn > Type conversion (float) i - converts integer i to
float .

Associativity and precedence

What is the result of 10 + 3 ∗ 2? 26 or 16.

Answer: 16 because ∗ has higher precedence than +. A higher
precedence operator always executes first. ∗, / have higher
precedence than +, −.

What is the result of 10/3 ∗ 2? 6 or 1.
Answer: 6 because /, ∗ have the same precedence but they
are left-to-right associative.

Brackets ‘(’ and ‘)’ can be used to change execution order. A
bracketed expression has the highest precedence and is always
executed first. So, 10/(3 ∗ 2) = 1.

Associativity and precedence

What is the result of 10 + 3 ∗ 2? 26 or 16.
Answer: 16 because ∗ has higher precedence than +. A higher
precedence operator always executes first. ∗, / have higher
precedence than +, −.

What is the result of 10/3 ∗ 2? 6 or 1.

Answer: 6 because /, ∗ have the same precedence but they
are left-to-right associative.

Brackets ‘(’ and ‘)’ can be used to change execution order. A
bracketed expression has the highest precedence and is always
executed first. So, 10/(3 ∗ 2) = 1.

Associativity and precedence

What is the result of 10 + 3 ∗ 2? 26 or 16.
Answer: 16 because ∗ has higher precedence than +. A higher
precedence operator always executes first. ∗, / have higher
precedence than +, −.

What is the result of 10/3 ∗ 2? 6 or 1.
Answer: 6 because /, ∗ have the same precedence but they
are left-to-right associative.

Brackets ‘(’ and ‘)’ can be used to change execution order. A
bracketed expression has the highest precedence and is always
executed first. So, 10/(3 ∗ 2) = 1.

Precedence and associativity of operators

