
CSD101: Introduction to computing and programming (ICP)



Quick overview of 8 main C constructs/ features

The eight main constructs/features of C required to write
programs:

Preamble - linking section.

Declarations.

Expressions.

Conditionals.

Loops.

Functions.

Input, output.

Compound data values - data structures.



Notational conventions

A word within angular brackets denotes an entity of the kind
the word represents. For example: <var> stands for any
variable name, <type> stands for any type, <init> stands for
any kind of initializing expression, etc.

When an entity is within square brackets then it is optional.
For example, <type> <var>[=<init>] means that =<init>
is optional.

Other characters/strings shown are required/ necessary. For
example in <type> <var>[=<init>]; the semicolon ; is
required, similarly in the optional [=<init>] the = is
necessary if the optional part is present.

... means the previous unit repeats arbitrarily many times.
Of course, in practice there is a finite limit imposed by the
compiler.

We will see concrete examples in C code.



Preamble or linking section

Include directives for libraries.
#include<<lib-name>>

Example:
#include<stdio.h>

Note that there is no semicolon at the end so these are not
statements.
Define directives for defining constants.
#define <var> <const-exp>

Example:
#define TRUE 1

Functions similar to a macro. 1 will be substituted wherever
TRUE occurs in the code.
The following will be discussed later in the course.
Macros.
Conditional compilation/ inclusion directives.

The preamble is processed by the C pre-processor.



Declarations, function defn.

Two main kinds of declarations.

Variable declarations.
<type> <var1>[=<init1>][, ...];

Example: int i, sum=0;

Function declarations.
<return-type> <fn-name>([<type1> [<arg1>][, ...]]);

Example:
int max(int a, int b); or int max(int, int);

Functions can also be declared and defined simultaneously.
<return-type> <fn-name>([<args>]) {<stmt>} where
<args> is <type1> <var1>[, ...]



Expressions

An expression yields a value. So, they can occur wherever
values can legally occur.

An expression can be defined by the following recursive rules.
The symbol := stands for defined as:
<expr> := <const>

:= <var>

:= <uop><expr>

:= <expr1><bop><expr2>

:= <cond-expr>?<expr-true>:<expr-false>

:= <var>=<expr>

Legend: <uop>: unary operator, <bop>: binary operator.
The assingment operator (=) is both an expression and a statement.

x=y=z*z is legal, both x and y will have value z*z.

Examples:
a) 10 b) 3.14159 c) pi=3.14159 d) -pi e) x+y f) (i>0)?1:0



Conditionals

Conditionals are statements.

if-then conditional.
if (<cond-expr>) <stmt-true>;

Example:
if (i==10) j=i*i;

if (<cond-expr>) <stmt-true> else <stmt-false>

Example:
if (i>0) j=i*i; else j=i*i*i;

The switch statement will be discussed later.



Loops

Three types of loops.

For loop.
for (<var-loop>; <cond-expr>; <inc-expr>) <stmt>

Example:
for (i=1; i<=n; i=i+1) sum=sum+i;

While loop.
while (<cond-expr>) <stmt>

Example:

while (i>0) {

r=i%10;

i=i//10;

}

Do-while loop.
do <stmt> while <cond-expr>;

Example:

do

r=i%10

i=i//10

while (i>0);


