
CSD101: Introduction to computing and programming (ICP)



A very simple computer(VSC) I

An accumulator is a register that holds one data element
(i.e. an integer, real number or character (one or more
depending on the encoding)). Their size is 2/ 4/ 8 bytes.
Modern computers have 64-bit or 8-byte registers.

PC (program counter) contains the address of the instruction
to be executed next.

Random access memory (RAM) addresses start from 1 and
increase by 1 (byte). Access is typically in chunks of 4/ 8
bytes at a time.

In principle the very simple computer is as powerful as any
modern day computer.

A VSC can be hard to program because it has a very simple,
small set of operations on data (later slide).



A very simple computer(VSC) II

For our purposes we assume that the VSC works in terms of
units (decimal numbers and characters) and representations
(internal representations of the current OS) that are
convenient. For simplicity VSC works only with whole
numbers.

Memory size of VSC is 1000 units - addresses from 0 to 999.



Instruction set for the very simple computer I

Note: A is an address; acc stands for accumulator; @A means contents of address A; PC is program counter, N -
number, S - string

Instrn code Instrn format Meaning

0 halt Program halts

1 strt Start of program

2 lodm A acc = @A (load from memory)

3 lodn N acc = N (acc loaded with number N)

4 lods S acc = S (acc loaded with string S)

5 stor A store acc at addr A

6 add A acc = acc + @A

7 neg A acc = -acc

8 jmp A PC = A

9 jmp- A if (acc<0) PC = A

10 jmp0 A if (acc==0) PC = A

11 jmp+ A if (acc>0) PC = A

12 inpn acc = number read from input device

13 inps acc = string read from input device

14 out write acc to output device (string)

15 outl write new line to output device



Writing code for VSC

Code for VSC is in the form of a sequence of lines of code. Each
line is stored in successive addresses in memory or RAM. Each line
has the following format:

Address Operator code Optional operand

The fields should be separated by one or more spaces. The lines of
the program should always be stored in successive addresses else it
is an error. To comment VSC code we use the # symbol.
Anything after the # till the end of line is neglected.



Some simple problems

1 Output a message.

2 Read two numbers m and n and output the larger number.

3 Read two numbers m and n and output the product of the
two numbers.

4 Read two positive integers m and n and output mn.

5 Read two positive integers m and n and output the largest
number that divides both m and n.

We write VSC code for the first three.
Problems 4 to 5 are for you to practice in lab 1, Q3.



Example of VSC program - 1

Example 1

A VSC program that prints Very Simple Computer.
Address Instn. code Optional operand Comment

0 1 #start

1 4 ”Very Simple Computer” #load string in acc

2 14 #output contents of acc

3 15 #output newline

4 0 #halt



Example of VSC program - 2

Example 2

A VSC program that reads two numbers and prints the larger of
the two numbers.

Address Instn. code Optional operand Comment

0 1 #start

1 12 #Read first number, acc=n1

2 5 500 #Store n1 at addr 500

3 12 #Read second number, acc=n2

4 5 501 #Store n2 at 501

5 7 #n2 is negated, acc=-n2

6 6 500 #add n1, acc=n1-n2

7 11 14 #n1 is larger, jmp+ to 14

8 2 501 #n2 ≥ n1, load n2, acc=n2

9 14 #output acc

10 4 ” is larger or equal.” #load string, acc=”is larger or equal”

11 14 #output string

12 15 #output newline

13 0 #halt

14 2 500 #n1 > n2, load n1, acc=n1

15 8 9 #jump to addr 9



Example of VSC program - 3

Read m, n output m × n. Has to be done by repeated addition.
Pseudo code:
Line no. Pseudocode Comment

0 # m, n are non-negative numbers.

1 read m

2 read n

3 p=0 #p stores the product

4 if (m equals 0) go to line 8 #product calculation done.

5 p=p+n

6 m=m-1

7 go to line 4

8 output p

9 output newline

10 stop



VSC code example - 3

Address Instn code Opt. operand Comment

0 1 #start

1 12 #read m, acc=m

2 5 500 #store m at addr 500

3 12 #read n, acc=n

4 5 501 #store n at addr 501

5 3 0 #load acc with 0

6 5 502 #store at 502, product p=0

7 3 -1 #load constant -1

8 5 503 #-1 stored at addr 503

9 2 500 #load m, acc=m

10 10 18 #jump to 18 if acc is 0. Mult done.

11 2 502 #load p, acc=p

12 6 501 #add n to p

13 5 502 #store p at 502

14 2 500 #load m in acc

15 6 503 #m=m-1

16 5 500 #store m at addr 500

17 8 10 #jump to addr 10

18 2 502 #load acc with p - the product

19 14 #output the product

20 15 #output newline

21 0 #stop



Example of VSC program - 4

Read m, n and output mn.

Has to be done by repeated multiplication.

We have to reuse the multiplication program of example 3
repeatedly.

The pseudocode is written in the next slide. (Convert it to
VSC code - lab 1 Q3 exercise)



Pseudocode for example 4

Line no. Pseudocode Comment

1 # m, n are positive integers.

2 read n

3 read m

4 r=1 #r is the result

5 if (n equals 0) go to line 9

6 r=m*r #reuse multiplication using fresh addresses

7 n=n-1

8 go to line 5

9 output r

10 stop



Algorithms and programs

A systematic way to solve a problem is called an algorithm.

Definition 1

An algorithm is a systematic, finite, effective, step-by-step method
to solve a problem.

Systematic: correct answer for all inputs

Finite: terminates in finite time for all inputs

Effective: we know exactly how to do every step

Pseudocode or programs in any programming language
implement algorithms (most of the time).



Example of VSC program - 5

To get the greatest common divisor (GCD) of two positive integers m, n
we must first figure out how to solve the problem. That is we need an
algorithm.

The algorithm to get the GCD is based on the following property of
integers. If z > 0 is the greatest common divisor of m and n with m > n
then z will also divide m − n. Now we can repeat this process of
larger − smaller with m − n and n until m = n at which point we have
the GCD - it is m. It is clear this will terminate since we calculate
larger − smaller in each step and the difference keeps decreasing.

Example 3
m n m − n (assuming m > n)

64 36 28

36 28 8

28 8 20

20 8 12

12 8 4

8 4 4

4 4 m = n, terminates, GCD=4


