
CSD101: Introduction to computing and programming (ICP)



How does GCC work?

Different compilers may work slightly differently. But GCC has
the following work flow:

C program
Pre−processor→ Augmented C program

Compiler→ Assembly

code
Assembler→ Object code .o file

Linker→ Executable.

Using switches GCC can be made to stop at any stage to get
the corresponding output. For example,
gcc -E <file.c> -o fileAug.c
will run just the pre-processor and output the augmented C
program in fileAug.c. The switch -S will produce assembly
code.

In addition GCC has a large number of switches that allow
control over different stages of the work flow. See
documentation at https://gcc.gnu.org/



The make utility I

Large programs are normally distributed over many files where
each file tends to implement one coherent piece of
functionality. An example is the standard C library.

When changes are made to one or more files generating an
executable by typing in commands at the command line can
be extremely difficult and error prone. It may be almost
impossible when the number of files is very large.

The make utility allows us to specify file dependencies and
actions so that changes to one or more files can trigger an
orderly sequence of compilations to generate the final
executable. The utility can be used in more general settings
where a sequence of actions follow due to changes in some
files that initiate actions on other files that depend on them.



The make utility II

For example, in C an executable is created from a set of .o
files which in turn are created by compiling source code files.
If a change is made in the source code of a library then all
files that use functions from that library will have to be
compiled to .o files and then linked to get the executable.



makefile

By default, the make program reads its specifications from a
file called makefile or Makefile.

Various versions of make are available on different platforms
and they are mostly compatible with each other for simple
makefiles. However, most versions also have their own
extensions that will not work on other platforms.

The make we discuss is GNU make that is available on Linux
and MAC systems. It is used to build executables for the
Linux kernel, GCC compiler, Firefox browser, LibreOffice
system amongst others.



Make specification I

A make specification in a makefile contains a sequence of
rules having the following structure.

Structure of a rule:

target ... [target1 ...] : pre-requisites

TAB command1

TAB command2

TAB ...

target is the executable file that must be built. The
pre-requsite contains file names of files on which target

depends.

command n lines are actions that must be done to build the
target. Note the TAB character in front of each command
line. That is necessary. Omitting it leads to errors.



Make specification II

A rule can contain just a target without any pre-requisites.
Such a target is called a phony target. Phony targets are
meant to just execute a sequence of commands and their
name(s) must be passed in as arguments to the make

command.

By default, the make command without arguments will build
the first target in the makefile. This can trigger a chain of
other commands because the pre-requisites of target may
itself be a target.



Example3 - version 1

edit : main.o kbd.o command.o display.o insert.o \

search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o insert.o \

search.o files.o utils.o

main.o : main.c defs.h

cc -c main.c

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

command.o : command.c defs.h command.h

cc -c command.c

display.o : display.c defs.h buffer.h

cc -c display.c

3make manual



Example contd.

insert.o : insert.c defs.h buffer.h

cc -c insert.c

search.o : search.c defs.h buffer.h

cc -c search.c

files.o : files.c defs.h buffer.h command.h

cc -c files.c

utils.o : utils.c defs.h

cc -c utils.c

clean :

rm edit main.o kbd.o command.o display.o insert.o \

search.o files.o utils.o



Example version 2, use of variables

objs = main.o kbd.o command.o display.o insert.o \

search.o files.o utils.o

edit : $(objs)

cc -o edit $(objs)

main.o : main.c defs.h

cc -c main.c

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

command.o : command.c defs.h command.h

cc -c command.c

display.o : display.c defs.h buffer.h

cc -c display.c



Example version 2 contd.

insert.o : insert.c defs.h buffer.h

cc -c insert.c

search.o : search.c defs.h buffer.h

cc -c search.c

files.o : files.c defs.h buffer.h command.h

cc -c files.c

utils.o : utils.c defs.h

cc -c utils.c

clean :

rm edit $(objs)



Example version 3, implicit rules

objs = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

edit : $(objs)

cc -o edit $(objs)

main.o : defs.h

kbd.o : defs.h command.h

command.o : defs.h command.h

display.o : defs.h buffer.h

insert.o : defs.h buffer.h

search.o : defs.h buffer.h

files.o : defs.h buffer.h command.h

utils.o : defs.h

.PHONY : clean

clean :

rm edit $(objs)



Alternate style - using implicit rules

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

edit : $(objects)

cc -o edit $(objects)

$(objects) : defs.h

kbd.o command.o files.o : command.h

display.o insert.o search.o files.o : buffer.h

Makes the makefile more compact but it is a matter of taste which
style of makefile is used.



Further information

GNU make has many more features. We have discussed the
basic features that will allow us to build executables easily
when multiple files are involved.

For further details see the make manual available at:
https://www.gnu.org/software/make/manual/.



Hope you do better than this. Bonne chance


