
CSD101: Introduction to computing and programming (ICP)



Linked structures I

Structure instances can be linked in a chain (unidirectional or
bidirectional) by using pointers to structures via a self
referential mechanism.

struct Node {

int data;

struct Node *next;

};

// next points to the next structure instance or is NULL

While declaring a Node we have to use the tag style of
declaration and cannot use typedef.

The above is called a singly linked list - unidirectional link.

We can define a bidirectional or doubly linked list that has
pointers to the next node and also the previous node.



Linked structures II

struct Node {

int data;

struct Node *next, *prev;

};

// next points to the next Node instance or is NULL

//prev points to the previous Node instance or is NULL



Data structure or data type

Definition 7

A data structure (or data type) is a compound value that contains
other values and that has certain well defined behaviour.
The behaviour is concretely defined in terms of various operations
on the data structure (typically creation, addition, deletion,
modification, emptyness, etc.) and properties that these operations
must follow.
Data structures are used to store data and implement algorithms
efficiently.

Note that the word structure in data structure is not related to C
structures. We use C structures and linking to implement some
data structures. For example the singly/doubly linked lists are data
structures.



Stack - data structure I

A stack is a data structure with Last in first out (or LIFO)
behaviour. That means the element added last to the stack
comes out first.

A stack has 3 operations defined on it apart from create.
Stack *push(Stack *st, int info - adds info to the
stack and returns a pointer to the new stack.
Stack *pop(Stack *st, <element-type> *info) -
removes the top element in the stack and returns a pointer to
the popped stack. It also returns the popped element via a
pointer to the element in the argument list.
int isEmpty(Stack *st) - returns true if stack st is empty
else it is false.
Stack *create() - creates an empty stack and returns a
pointer to it.



Stack - data structure II

Stacks are used in many places. One important use is in
managing function calls, returns and arguments to functions.

We will implement a stack using a list.



Queue - data structure I

A queue is familiar to us from daily life. It has first in first
out behaviour (or FIFO). That is any data item that enters
the queue first exits first.

A queue also has 3 operations apart from create.
Queue *addq(Queue *qp, int info - adds info to the
queue and returns a pointer to the new queue.
Queue *deleteq(Queue *qp, <element-type> *info) -
deletes the item at the front of the queue and returns the
resulting queue. The info in the deleted item is returned in
info.
int isEmpty(Queue *qp) - returns true if queue qp is
empty and false otherwise.
Queue *createq(void) - creates and returns an empty
queue.



Queue - data structure II

We will implement a queue using a singly linked list. But first
we add an operation:
struct Node *deleteAtEnd(struct Node *listp, int *info)

to a list. However, this implementation is inefficient since it
has to traverse the entire list to reach the end of the queue.
To make it efficient an option is to create a Queue data
structure with an embedded list with pointers to the
beginning and end of the list. Add to the end of list and
delete from the beginning of the list


