
CSD101: Introduction to computing and programming (ICP)



Memory in C programs

Memory in C programs can be divided into 3 conceptual
types:

Memory for program and data that stays till program is
executing. Program itsef, global data, static variables, data in
main.
Stack memory. Memory used when functions are called. This
is automatically allocated and retrieved when the function call
is over.
Dynamic/Heap memory. Memory controlled by the
programmer for dynamic data structures.

A void* pointer is a pointer to data of any type and is
explicitly coerced to a type when needed. This is required
when working with dynamic memory.



Dynamic memory I

Dynamic memory (or heap memory) is allocated and freed by the
programmer.

Unlike stack memory it is not allocated or deallocated automatically.

The C standard library (stdlib), has 4 functions to do this. Each
allocation function returns a void* pointer to the memory chunk if
memory allocation was successful else returns NULL.

void *malloc(size t size) - size is the size of the memory
needed. This is usually specified using the sizeof function for
the data type for which the memory is needed. Memory is not
initialized.
void *calloc(size t nitems, size t size) - nitems is
the number of items and size is the size of each item. The
memory is initialized to 0.



Dynamic memory II

void *realloc(void *ptr, size t size) - ptr is a
pointer to memory allocated earlier by one of the allocation
functions. It is resized to size.

free(void *ptr) - deallocates memory earlier allocated by
one of the allocation functions.



Dangling pointers and memory leaks

Dynamic memory allocation can lead to two serious kinds of
bugs in programs: dangling pointers and memory leaks.
Dangling pointers: these are created when a pointer points to
allocated memory that has been freed. If we try to use the
freed memory the results are undefined.
Memory leaks: this happens when the only pointer to some
allocated memory starts pointing to some other allocated
memory of the same type without freeing the first chunk of
memory. Now the program has no way to reclaim this memory
since there is no reference to it and it is effectively lost. If this
happens repeatedly then the program can run out of dynamic
memory. A memory leak is the most common bug in C (and
C++) programs. It is hard to catch since it can lead to
program failure only much later.
So, always free memory when not needed anymore -
free(<ptr>).



Dynamic memory use

Dynamic memory can be used to create variable sized strings,
arrays and linked structures (most important use).

For examples: see code heap1.c, heap2.c.



Linked structures

Structure instances can be linked in a chain by using pointers
to structures via a self referential mechanism.

struct Node {

int data;

struct Node *next;

};

// next points to the next structure instance or is NULL

While declaring a Node we have to use the tag style of
declaration and cannot use typedef.


