
CSD101: Introduction to computing and programming (ICP)

Pointer declaration and use I

int *ip; declares that ip is the address-of/pointer-to an
integer. Consider the declaration int i = 5, j; then
ip = &i; assigns the memory location for the variable i to
ip. So, j = *ip; will take the contents of the memory
address in ip, namely the value 5 and assign it to j.

While an address is just a positive integer in the linear
sequence of bytes that is memory the & operator returns the
address tagged with the type of the variable whose address it
is. So, &i returns the address of an integer variable. So, an
address/pointer is a pointer to a particular type of object.

Note the difference in meaning when a variable name is
mentioned on the LHS and RHS of an assignment statement.
So, statement i=j means store the value in variable j in the
address of variable i. So, in the code fragment:

Pointer declaration and use II

int i=2, j=4;

int *ip=&i;

//ip is a pointer to i, i.e. contains address of i

*ip=j;//will change contents of i to 4

the value of i will change to 4.

If pointers are not initialized properly they can lead to run
time errors like segmentation faults - caused by illegal memory
references. So, pointers can lead to obscure errors.

Never return a pointer to a local variable from a function.

When are pointers used?

To pass arguments when value changes inside a function must
be visible outside (that is in the calling function).

When multiple values have to be returned. (Discussed later
after dynamic memory).

When using arrays. Conserves memory by using the same
chunk of memory via a single pointer.

When dynamic, linked structures are needed. (After dynamic
memory)

Pointers and arrays

Array elements can be accessed by using pointers. For
example,

int a[5]={1,2,3,4,5};

int *ap;

ap=&a[0]//ap points to the 1st element of array a[]

printf("%d", *(ap+4));//prints the 5th element of array a[]

(ap+2)=(ap+2)+10;//adds 10 to 3rd element of array a[]

The compiler while passing array arguments actually passes a
pointer to the beginning of the array to the function. This is
the reason changes to an array are reflected back in the
calling function.

Structures

Data in the real world often comes as a data bundle or set of
values that pertain to a single logical entity or object and not
as separate values.
For example, a student has several attributes like: name, roll
number, department, age, login ID, address, etc. associated
with each student. It makes sense to think of a student as an
entity or object that has values for each of these attributes.
Modern languages allow this using the concept of a class that
can be instantiated multiple times to create different objects
of that class all with the same attributes. So, in C++, Java,
Python etc. we can define a Student class with attributes that
all students have and then instantiate such a class to create
individual students.
C has a more rudimentray feature called structures that allows
one to define a type that has a set of attributes with given
types.

Structure example

struct {

char name[N];

int rollNo;

int age;

char loginID[N];

int quizzes[10];

} s1={"Arun Gupta", 20201001,18,"ag100",{5,8,9}};

Structure tag, type definition

struct Student {

char name[N];

int rollNo;

int age;

char loginID[N];

int quizzes[10];

};

typedef struct {

char name[N];

int rollNo;

int age;

char loginID[N];

int quizzes[10];

} Student;

Structure properties

Structure can be arguments, returned from functions as values
and can be pointed to. They can be assigned but cannot be
compared.

Structures can also be nested.

