CSD101: Introduction to computing and programming (ICP)

Pointer declaration and use |

m int *ip; declares that ip is the address-of /pointer-to an
integer. Consider the declaration int i = 5, j; then
ip = &i; assigns the memory location for the variable i to
ip. So, j = *ip; will take the contents of the memory
address in ip, namely the value 5 and assign it to j.

m While an address is just a positive integer in the linear
sequence of bytes that is memory the & operator returns the
address tagged with the type of the variable whose address it
is. So, &i returns the address of an integer variable. So, an
address/pointer is a pointer to a particular type of object.

m Note the difference in meaning when a variable name is
mentioned on the LHS and RHS of an assignment statement.
So, statement i=j means store the value in variable j in the
address of variable i. So, in the code fragment:

Pointer declaration and use Il

int i=2, j=4;

int *ip=&i;

//ip is a pointer to i, i.e. contains address of i
*ip=j;//will change contents of i to 4

the value of i will change to 4.

m If pointers are not initialized properly they can lead to run
time errors like segmentation faults - caused by illegal memory
references. So, pointers can lead to obscure errors.

m Never return a pointer to a local variable from a function.

When are pointers used?

m To pass arguments when value changes inside a function must
be visible outside (that is in the calling function).

m When multiple values have to be returned. (Discussed later
after dynamic memory).

m When using arrays. Conserves memory by using the same
chunk of memory via a single pointer.

m When dynamic, linked structures are needed. (After dynamic
memory)

Pointers and arrays

m Array elements can be accessed by using pointers. For
example,

int al[5]1={1,2,3,4,5};
int *ap;
ap=&a[0]//ap points to the 1st element of array al]
printf("J/d", *(ap+4));//prints the 5th element of array al[l
* (ap+2)=*(ap+2)+10;//adds 10 to 3rd element of array all

m The compiler while passing array arguments actually passes a
pointer to the beginning of the array to the function. This is
the reason changes to an array are reflected back in the
calling function.

Structures

m Data in the real world often comes as a data bundle or set of
values that pertain to a single logical entity or object and not
as separate values.

m For example, a student has several attributes like: name, roll
number, department, age, login ID, address, etc. associated
with each student. It makes sense to think of a student as an
entity or object that has values for each of these attributes.

m Modern languages allow this using the concept of a class that
can be instantiated multiple times to create different objects
of that class all with the same attributes. So, in C++, Java,
Python etc. we can define a Student class with attributes that
all students have and then instantiate such a class to create
individual students.

m C has a more rudimentray feature called structures that allows
one to define a type that has a set of attributes with given

types.

Structure example

struct {
char name[N];
int rollNo;
int age;
char loginID[N];
int quizzes[10];
} si1={"Arun Gupta", 20201001,18,"agl100",{5,8,9}};

Structure tag, type definition

struct Student {
char name[N];
int rollNo;
int age;
char loginID[N];
int quizzes[10];

};

typedef struct {
char name[N];
int rollNo;
int age;
char loginID[N];
int quizzes[10];
} Student;

Structure properties

m Structure can be arguments, returned from functions as values
and can be pointed to. They can be assigned but cannot be
compared.

m Structures can also be nested.

