
CSD101: Introduction to computing and programming (ICP)



Some more organizational details

SNU ERP (registered list for course), Blackboard - LMS for
course.

SNU ERP and BB are separate and you must be
registered in both.
If you are not registered in ERP you are not in the course and
cannot be registered in BB.
If you are registered in SNU ERP but NOT on BB then send
an email to manish.dhawan@snu.edu.in.
If you don’t have a lab slot then choose one and send mail to
ziaur.rehman@snu.edu.in.
For any other registration related problems contact Dean UG
(deanugoffice@snu.edu.in ).

How to watch recorded lectures on Blackboard (BB)?
How to access lab assignments/quizzes/tests on BB and
upload answers?
Lab slot assignments, MS Teams links for labs, TA assignment
will be up either by tonight or on Sunday on the course
website ’Labs’ page.



Results of survey-1 (225 respondents)



Results of survey-2



Computer - what is it - an abstract description

A computer is a device that:

1 Understands (that is able to represent) the following kinds of
DATA:

Whole numbers both +ve, -ve - that is integers.
Decimal or real numbers (only approximately) due to finite
representation.
Characters (of all kinds).

2 can carry out a sequence of operations on data. The sequence
of operations is usually called a PROGRAM.

3 The computer has a fixed way to execute the program using
the data as needed.

4 Both the program and the data are stored in the computer.
The program is stored in consecutive locations in memory so
that it can be executed in sequence.



Representing data I

The lowest level of data representation is a bit (binary digit).

A bit can be implemented by any device that can be in two
states - 0 and 1.

For use in computers bits are chunked together into bytes (1
byte=8 bits) and words (1 word = 2/4/8 bytes).

A register is a sequence of bits treated as a unit where data
can be stored/ accessed/ manipulated. Registers are present
in the CPU. The registers in the ALU are the locus of
arithmetic and logical operations.

Data representation:

Whole numbers are represented in binary with an optional bit
for sign.
Real or floating point numbers are represented by a
mantissa+exponent notation and two bits for sign (one for
mantissa and one for the exponent).



Representing data II

Characters are represented by a defined mapping (called
encoding). Two popular encodings are: ASCII (7-bits),
Unicode (UTF-8, UTF-16, UTF-32). ASCII is a proper subset
(first 128 codepoints) of UTF-8. Unicode implements all the
characters of all living and dead scripts and special characters
(e.g. punctuation, emojis etc.).

Most systems (OS, websites etc) use UTF-8 and some use
UTF-16. UTF-32 is rare.

Due to finite representations. There are limits on the size and
precision with which numbers can be represented.



Computer - hardware block diagram

Figure: Computer hardware: logical, high-level block diagram. (src: tutorialsmate.com)



A very simple computer(VSC) I

An accumulator is a register that holds one data element
(i.e. an integer, real number or character (one or more
depending on the encoding)). Their size is 2/ 4/ 8 bytes.
Modern computers have 64-bit or 8-byte registers.

PC (program counter) contains the address of the instruction
to be executed next.

Random access memory (RAM) addresses start from 1 and
increase by 1 (byte). Access is typically in chunks of 4/ 8
bytes at a time.

In principle the very simple computer is as powerful as any
modern day computer.

A VSC can be hard to program because it has a very simple,
small set of operations on data (next slide).



A very simple computer(VSC) II

For our purposes we assume that the VSC works in terms of
units (decimal numbers and characters) and representations
(internal representations of the current OS) that are
convenient. For simplicity VSC works only with whole
numbers.

Memory size of VSC is 1000 units - addresses from 0 to 999.



Instruction set for the very simple computer I

Note: A is an address; acc stands for accumulator; @A means contents of address A; PC is program counter, N -
number, S - string

Instrn code Instrn format Meaning

0 halt Program halts

1 strt Start of program

2 lodm A acc = @A (load from memory)

3 lodn N acc = N (acc loaded with number N)

4 lods S acc = S (acc loaded with string S)

5 stor A store acc at addr A

6 add A acc = acc + @A

7 neg A acc = -acc

8 jmp A PC = A

9 jmp- A if (acc<0) PC = A

10 jmp0 A if (acc==0) PC = A

11 jmp+ A if (acc>0) PC = A

12 inpn acc = number read from input device

13 inps acc = string read from input device

14 out write acc to output device (string)

15 outl write new line to output device



Writing code for VSC

Code for VSC is in the form of a sequence of lines of code. Each
line has the following format:

Address Operator code Optional operand

The fields should be separated by one or more spaces. The lines of
the program should always be stored in successive addresses else it
is an error. To comment VSC code we use the # symbol.
Anything after the # till the end of line is neglected.



Some simple problems

1 Output a message.

2 Read two numbers m and n and output the larger number.

3 Read two numbers m and n and output the product of the
two numbers.

4 Read two positive integers m and n and output mn.

5 Read two positive integers m and n and output the largest
number that divides both m and n.

We write VSC code for the first two.
Problems 3 to 5 are for you to practice.



Examples of VSC programs - 1

Example 1

A VSC program that prints Very Simple Computer.

0 1

1 4 "Very Simple Computer" #load string in acc

2 14 #output contents of acc

3 15 #output newline

4 0 #halt



Examples of VSC programs - 2

Example 2

A VSC program that reads two numbers and prints the larger of
the two numbers.

10 1

11 12 #Read first number - n1

12 5 500 #Store it at addr 500

13 12 #Read second number - n2

14 5 501 #Store it at 501

15 7 #n2 negated

16 6 500 #acc=n1-n2

17 11 24 #n1 is larger

18 2 501 #n2 is larger load it in acc

19 14 #output acc

20 4 " is larger or equal." #load string

21 14 #output string

22 15 #output newline

23 0 #halt

24 2 500 #n1 is larger load it in acc

25 8 19 #jump to code at addr 19


