
CSD101: Introduction to computing and programming (ICP)

Time complexity of algorithms

We have seen different ways to sort, for example: bubble sort,
insertion sort, selection sort, quick sort, merge sort.

Which is the fastest? Or more generally, how do we estimate
the time complexity of algorithms?
Some observations:

The exact time taken clearly depends on the length of the
input sequence. More generally length of the input.
It also depends on the state of the initial unsorted array.

To be able to compare the time complexity of algorithms we
estimate the time complexity in the worst case.

Also, we measure complexity in terms of the order of the
fastest growing term and ignore the slower growing and
constant terms/factors.

This way of measuring time complexity is called big-O
complexity. We will symbolize it by O(). It is called the
Landau notation.

Definition of O() complexity

Definition 5

Let f (x), g(x) be functions defined
on some subset of the real line.
Then function f (x) =O((g(x)) if
and only if there exist constants C
and x0 such that for all x > x0,
|f (x)| ≤ C |g(x)|.
That is beyond x0, Cg(x) always
dominates f (x). In CS
f (x), g(x) > 0.
Note that ’=’ symbol has a

different meaning here.

This is for large values of x . That
is x → ∞. Called asymptotic
complexity.

Commonly used O() functions

Function Name

O(1) Constant - does not depend on input size

O(log(n)) Logarithmic

O((log(n))c) Poly-logarithmic

O(n) Linear

O(n2) Quadratic

O(nc) Polynomial

O(cn) Exponential (c > 1)

c is a constant and n is size of input. The above are in increasing
order.

Examples

Expression evaluation will typically take constant time (if it
does not involve a function call).

Finding the maximum/minimum element in a sorted sequence
of size n can be done in constant or O(1) time. This is a
better example for a constant time algorithm.

Searching whether an element exists in a sorted sequence of
size n can be done in O(log2(n)) time.

Finding the maximum or minimum element in a sequence of
size n can be done in O(n) time.

Bubblesort, selection sort, quicksort take O(n2) time.

Calculating the matrix product C = A× B where A, B, C are
n × n matrices using the standard formula takes O(n3) time.

Evaluating the nth fibonacci number using the recursive
definition will take O(2n) time.

How fast functions grow. Intractability.

n log10(n) n2 n4 2n

10 1 102 104 ∼ 103

102 2 104 108 ∼ 1030

104 4 108 1016 ∼ 103000

Already at n = 100, 2n is intractable. So, an algorithm with
exponential time complexity is intractable for even relatively small
values of n. Very high order polynomials also become intractable
for moderate values of n.

Related notation

Definition 6

For real functions f (x), g(x) defined on some part of the real line,
f (x) = o(g(x)) if and only if for all C > 0 there exists x0 such
that |f (x)| < C |g(x)| for all x > x0.
Informally, f (x) grows much more slowly compared to g(x).

Notation Definition

f (x) = O(g(x) Earlier slide

f (x) = o(g(x)) Above

f (x) = Ω(g(x)) g(x) = O(f (x))

f (x) = Θ(g(x)) f (x) = O(g(x)) and g(x) = O(f (x))

O() complexity and actual time taken

The O() complexity is the asymptotic, worst case complexity.

In practice under different conditions an algorithm with worse
theoretical complexity may be faster than one with better
theoretically complexity. For example, Quicksort (O(n2))
works faster than Mergesort (O(n log(n))) in many cases - for
small to moderate sized sequences.

Pointers I

The program itself and all the data of a computer program are
stored in the memory (RAM) of the computer.

Computer memory (RAM) can be modelled as a linear
sequence of bytes that is typically manipulated in chunks of
2—4—8 bytes. For example, an int typically uses 4 bytes
while long uses 8 bytes.

Each byte (or on some systems a chunk of bytes) has an
address which is its position in the linear sequence of bytes
that make up the memory.

Every variable has two items associated with it at all times. A
value and the location in memory where this value is stored
called its address.

Pointers II

To store something into memory we have to give an address
and the value to be stored. Most of the time when we use
variables in C programs we mean their value. One place where
the address is used is in an assignment. In the expression
(assume all variables are ints) a=b+c the meaning is store the
value obtained by adding the values of b and c in the location
for variable a. So, while b and c stand for the corresponding
values, for a the meaning is the corresponding address.

Pointers provide a way to directly specify and use memory
addresses for different types of values.

Pointers III

To deal with pointers C has two operators: * ≡ content-of
and & ≡ address-of. The operand for the * operator is an
address/pointer and it returns the contents of the address
(called de-referencing a pointer). The operand for the &
operator is a variable and it returns the starting address where
the variable is stored.

Note that in a C program a pointer variable will have a
corresponding value (which is an address) and an address
where it is stored.

As a convention in all our code we will add the suffix ‘p’ to all
pointer variables to indicate that they are pointers.

