CSD101: Introduction to computing and programming (ICP)

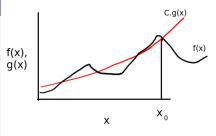
Time complexity of algorithms

- We have seen different ways to sort, for example: bubble sort, insertion sort, selection sort, quick sort, merge sort.
- Which is the fastest? Or more generally, how do we estimate the time complexity of algorithms?
- Some observations:
 - The exact time taken clearly depends on the length of the input sequence. More generally length of the input.
 - It also depends on the state of the initial unsorted array.
- To be able to compare the time complexity of algorithms we estimate the time complexity in the **worst case**.
- Also, we measure complexity in terms of the order of the fastest growing term and ignore the slower growing and constant terms/factors.
- This way of measuring time complexity is called **big-O** complexity. We will symbolize it by O(). It is called the Landau notation in mathematics.

Definition of $\mathcal{O}()$ complexity

Definition 5

Let f(x), g(x) be functions defined on some subset of the real line. Then function f(x) = O((g(x))) if and only if there exist constants C and x_0 such that for all $x > x_0$, $|f(x)| \le C|g(x)|$. That is beyond x_0 , Cg(x) always dominates f(x). In CS f(x), g(x) > 0. Note that '=' symbol has a different meaning here.



This is for large values of x. That is $x \to \infty$. Called asymptotic complexity.

Function	Name
$\mathcal{O}(1)$	Constant
$\mathcal{O}(\log(n))$	Logarithmic
$\mathcal{O}((\log(n))^c)$	Poly-logarithmic
$\mathcal{O}(n)$	Linear
$\mathcal{O}(n^2)$	Quadratic
$\mathcal{O}(n^c)$	Polynomial
$\mathcal{O}(c^n)$	Exponential

c is a constant. The above are in increasing order.

п	$log_{10}(n)$	<i>n</i> ²	n ⁴	2 ⁿ
10	1	10 ²	10 ⁴	$\sim 10^3$
10 ²	2	104	10 ⁸	$\sim 10^{30}$
10 ⁴	4	10 ⁸	10^{16}	$\sim 10^{3000}$

Already at n = 100, 2^n is intractable. So, an algorithm with exponential time complexity is intractable for even relatively small values of n. Higher order polynomials also become intractable for moderate values of n.

Examples

- Expression evaluation will typically take constant time (if it does not involve a function call).
- Finding the maximum/minimum element in a sorted sequence of size n can be done in constant or O(1) time. This is a better example for a constant time algorithm.
- Searching whether an element exists in a sorted sequence of size n can be done in O(log₂(n)) time.
- Finding the maximum or minimum element in a sequence of size n can be done in O(n) time.
- Bubblesort, selection sort, quicksort take $\mathcal{O}(n^2)$ time.
- Calculating the matrix product $C = A \times B$ where A, B, C are $n \times n$ matrices using the standard formula takes $\mathcal{O}(n^3)$ time.
- Evaluating the nth fibonacci number using the recursive definition will take O(2ⁿ) time.