
CSD101: Introduction to computing and programming (ICP)



Time complexity of algorithms

We have seen different ways to sort, for example: bubble sort,
insertion sort, selection sort, quick sort, merge sort.

Which is the fastest? Or more generally, how do we estimate
the time complexity of algorithms?
Some observations:

The exact time taken clearly depends on the length of the
input sequence. More generally length of the input.
It also depends on the state of the initial unsorted array.

To be able to compare the time complexity of algorithms we
estimate the time complexity in the worst case.

Also, we measure complexity in terms of the order of the
fastest growing term and ignore the slower growing and
constant terms/factors.

This way of measuring time complexity is called big-O
complexity. We will symbolize it by O(). It is called the
Landau notation in mathematics.



Definition of O() complexity

Definition 5

Let f (x), g(x) be functions defined
on some subset of the real line.
Then function f (x) = O((g(x)) if
and only if there exist constants C
and x0 such that for all x > x0,
|f (x)| ≤ C |g(x)|.
That is beyond x0, Cg(x) always
dominates f (x). In CS
f (x), g(x) > 0.
Note that ’=’ symbol has a

different meaning here.

This is for large values of x . That
is x → ∞. Called asymptotic
complexity.



Commonly used O() functions

Function Name

O(1) Constant

O(log(n)) Logarithmic

O((log(n))c) Poly-logarithmic

O(n) Linear

O(n2) Quadratic

O(nc) Polynomial

O(cn) Exponential

c is a constant. The above are in increasing order.



Actual values for function growth

n log10(n) n2 n4 2n

10 1 102 104 ∼ 103

102 2 104 108 ∼ 1030

104 4 108 1016 ∼ 103000

Already at n = 100, 2n is intractable. So, an algorithm with
exponential time complexity is intractable for even relatively small
values of n. Higher order polynomials also become intractable for
moderate values of n.



Examples

Expression evaluation will typically take constant time (if it
does not involve a function call).

Finding the maximum/minimum element in a sorted sequence
of size n can be done in constant or O(1) time. This is a
better example for a constant time algorithm.

Searching whether an element exists in a sorted sequence of
size n can be done in O(log2(n)) time.

Finding the maximum or minimum element in a sequence of
size n can be done in O(n) time.

Bubblesort, selection sort, quicksort take O(n2) time.

Calculating the matrix product C = A× B where A, B, C are
n × n matrices using the standard formula takes O(n3) time.

Evaluating the nth fibonacci number using the recursive
definition will take O(2n) time.


