CSD101: Introduction to computing and programming (ICP)

Time complexity of algorithms

m We have seen different ways to sort, for example: bubble sort,
insertion sort, selection sort, quick sort, merge sort.

m Which is the fastest? Or more generally, how do we estimate
the time complexity of algorithms?

m Some observations:

m The exact time taken clearly depends on the length of the
input sequence. More generally length of the input.
m It also depends on the state of the initial unsorted array.

m To be able to compare the time complexity of algorithms we
estimate the time complexity in the worst case.

m Also, we measure complexity in terms of the order of the
fastest growing term and ignore the slower growing and
constant terms/factors.

m This way of measuring time complexity is called big-O
complexity. We will symbolize it by O(). It is called the
Landau notation in mathematics.

Definition of O() complexity

Definition 5 c.g(x)

Let f(x), g(x) be functions defined

on some subset of the real line.) 0
Then fun(,.‘tion f(x) = O((g(x) if gx)

and only if there exist constants C

and xq such that for all x > xg,

#()| < Clg(x)]. | .

That is beyond xg, Cg(x) always X

dominates f(x). In CS This is for large values of x. That
f(x),g(x) > 0. is x — oo. Called asymptotic

Note that ’=’ symbol has a

)) complexity.
different meaning here.

Commonly used O() functions

Function Name

0(1) Constant
O(log(n)) Logarithmic
O((log(n))c) Poly-logarithmic
O(n) Linear

O(n?) Quadratic
O(n°) Polynomial
O(c™) Exponential

c is a constant. The above are in increasing order.

Actual values for function growth

10* 4 108 1016 ~ 103000

Already at n = 100, 2" is intractable. So, an algorithm with
exponential time complexity is intractable for even relatively small
values of n. Higher order polynomials also become intractable for
moderate values of n.

Examples

m Expression evaluation will typically take constant time (if it
does not involve a function call).

m Finding the maximum/minimum element in a sorted sequence
of size n can be done in constant or O(1) time. This is a
better example for a constant time algorithm.

m Searching whether an element exists in a sorted sequence of
size n can be done in O(logz(n)) time.

m Finding the maximum or minimum element in a sequence of
size n can be done in O(n) time.

m Bubblesort, selection sort, quicksort take O(n?) time.

m Calculating the matrix product C = A x B where A, B, C are
n X n matrices using the standard formula takes O(n%) time.

m Evaluating the nth fibonacci number using the recursive
definition will take O(2") time.

