
CSD101: Introduction to computing and programming (ICP)



Recursion

Recursion is a mechanism that allows us to define a function
in terms of earlier values of the same function together with
one or more base cases that are defined explicitly.

A standard example is the factorial function:

factorial(0) = 1

factorian(n) = n * factorial(n-1)

Another example is the Fibonacci function:

Fibonacci(0) = 1

Fibonacci(1) = 1

Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)

The base cases are important since they allow a recursion to
terminate. Otherwise the recursion can go on infinitely or till
overflow/underflow halts the program.



Recursion can be expensive

Recursion can be computationally expensive.

Recursive version of finding the nth Fibonacci number can
lead to exponentially many calls to the base cases due to tree
recursion.

Iteration should be preferred in such cases.

Tail recursion - refers to the case when the recursive call is the
last call inside the recursive function. This is equivalent to
iteration in terms of computational cost. See examples of
Fibonacci functions in the code.



Recursion can be elegant

Tower of Hanoi problem - the recursive solution is extremely
elegant and easy to understand - see code.

An iterative solution is very hard to conceptualize and write.

Similarly, quick sort and merge sort algorithms are easy to
write and understand - see code. They have a clean
divide-and-conquer structure.


