
CSD101: Introduction to computing and programming (ICP)



Multi-dimensional arrays

We used arrays to represent sequences. But arrays are a very
general way to store multi-dimensional data. In particular 2D
arrays are very useful in practice.

2D or two dimensional data is so common in applications that
we have full packages to support them - for example
spreadsheets.

Just as 1D arrays represented sequences or vectors 2D arrays
represent mathematical objects called matrices.

A matrix is a mathematical object that can be visualized as a
2D table of values - typically floating point numbers - and is
naturally represented by a 2D array.



Example of a matrix and its array representation I

An m × n matrix (or array) has m rows and n columns. An
example 3× 4 matrix A is shown below:

A =

3.1 2.8 7.5 4.2

2.2 1.7 4.8 5.9

9.0 8.4 6.3 5.5


The corresponding array representation in C is:

float a[3][4]={{3.1,2.8,7.5,4.2},{2.2,1.7,4.8,5.9},{9.0,8.4,6.3,5.5}};



Example of a matrix and its array representation II

Elements in matrices and arrays are referred to by row,
column indices. For example, the value 4.8 can be accessed by
a[1][2] - remember indices start at 0 in C . The matrix
notation will normally write it as a subscript A2,3 - matrix
index count starts from 1 (by convention). Matrices are
usually denoted by capital letters.

Arrays are stored in row major form (i.e. row-wise). So, in
passing arguments only the first argument can remain
unspecified. The number of columns has to be specified.



Matrix operations I

As for other math objects we can define operations on
matrices. Let Am×n, Bm×n, Cn×p be three matrices with the
dimensions as shown and let α ∈ R be a scalar (i.e. real
number). Each element in a matrix is denoted by the
corresponding small case letter. So, ai ,j stands for the element
in location (i , j) in matrix A.

Multiplication by a scalar.
α× A = [αai ,j ], for 1 ≤ i ≤ m, 1 ≤ j ≤ n. That is every
element of A is multiplied by α.

Addition, subtraction.
A± B = [ai ,j ± bi ,j ], for 1 ≤ i ≤ m, 1 ≤ j ≤ n. The
corresponding elements are added or subtracted to get the
result. Note A, B must be compatible (i.e. have the same
dimensions).



Matrix operations II - multiplication

Multiplication. Cm×p = Am×n × Bn×p. The element
ci ,j =

∑n
k=1(ai ,k × bk,j). The product element is obtained by

multiplying the ith row of A with the jth column of B and
adding the corresponding products. So, the multiplicands A
and B must be compatible for multiplication to be possible -
that is - number of columns in A must equal number of rows
in B.



Matrix operations III: transpose I

Transpose of an m × n matrix A is the n ×m matrix AT

which has the rows and columns of A inter changed. For
example, if A is:

A =

[
a11 a12 a13

a21 a22 a23

]

then AT is given by (the element references are to A):

AT =

a11 a21

a12 a22

a13 a33





Determinant of a matrix I

The determinant of an n × n square matrix A, denoted
det(A) is a scalar value computed from the entries of the
matrix. The determinant describes some properties of the
linear transformation represented by the matrix A.

The determinant of A can be calulated by an inductive
calculation as follows called the Laplace expansion.

1 If A is a 1× 1 matrix - that is just a value a - then det(A) = a.
2 If A is a 2D matrix

A =

[
a b

c d

]

then det(A) = a× d − b × c .



Determinant of a matrix II

3 If A is an n × n matrix then:
det(A) =

∑n
j=1..n a1jC1j where Cij is (ij) cofactor of A.

Cofactor Cij = (−1)i+jMij , where Mij is called the (ij) minor
of A and is defined as Mij = det(A′) where A′ is obtained from
A by deleting the i th row and j th column from A giving an
(n − 1)× (n − 1) matrix.

Using the above inductive definition we can recursively
compute det(A).

An example. Let A be:

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33





Determinant of a matrix III

det(A) = a11C11 + a12C12 + a13C13

= a11M11 − a12M12 + a13M13

= a11(a22a33 − a23a32)− a12(a21a33 − a23a31)

+ a13(a21a32 − a22a31)



Inverse of a matrix

An identity matrix In is an n × n square matrix where the
right diagonal has only 1s and all the rest are 0s.

The inverse of an n × n matrix A written A−1 is defined by
the equation: AA−1 = A−1A = In provided det(A) 6= 0. If
det(A) = 0 then A is said to be singular and the inverse does
not exist.

A definition of A−1 is:

A−1 =
1

det(A)
Adjoint(A)

where Adjoint(A = CT ), C is the cofactor matrix of A - that
is each element aij is replaced by Cij to obtain C .

A calculation using the above formula is extremely inefficient.

Gaussian elimination can be used to calculate det(A) and A−1

efficiently.



Gaussian elimination to solve a system of linear equations I

A set of n linear equations in n unknowns x1, x2, . . . , xn can be
represented using an n × n coefficient matrix A and n × 1
column vector B representing the right hand sides of the
equations. For example, the system of n linear equations:

a11x1 + a12x2 + . . .+ a1nxn = b1

. . .

. . .

an1x1 + an2x2 + . . .+ annxn = bn

is represented by the n× n matrix A = [aij ], i , j = 1..n and the
right handside by the n × 1 column vector B = [bj ], j = 1..n.



Gaussian elimination to solve a system of linear equations II

To solve the system of equations we do two steps i)
elimination - converts A to an upper triangular matrix ii)
backsubstitution which gives us the values for each unknown
variable starting from xn and moving to x1.



Row reduction

Row reduction is done using elementary row operations:

Swap any two rows.

Multiply a row by a non-zero constant.

Add a scalar multiple of one row to another.

After row reduction is complete the orginal coefficient matrix
becomes an upper triangular matrix.

This can be easily used to find the values of the unknowns by
the process of back substitution.

Each elementary row operation is actually equivalent to
pre-multiplying matrix A by a specific matrix corresponding to
the elementary row operation. That is at the heart of why it
works.



Example


