
CSD101: Introduction to computing and programming (ICP)

printf structure

The printf function call structure is below.
printf("<format spec.>",<arguments>)

The <format spec.> contains zero or more conversion
specifiers signalled by the % sign. For each conversion
specifier there should be an argument in <arguments> of the
corresponding type.

Till now the conversion specifiers have been simple indicators
of the type. For example, %d for int , %f for float , %c for
char etc.

The conversion specifier can have a much more complex
structure with optional elements that allow one to control the
formatting. This is discussed in the following slides.

printf conversion char description1

1From Kernighan, Ritchie

Format specification of printf I

The structure of the conversion specifier in the format specification
is given below.

% [<flags>] [<Min. width>] [<precision>] [<size>] <conv. char>

Only % and <conv. char> are necessary. Others are optional.

<Min. width> gives the minimum width in characters of the
entire field. For a string (%s) it is right justifed.

The <flags> are given below.

Flag Meaning

− Left justify

+ Print +/− sign of numeric value

space Print space if no sign

0 Pad with leading 0s

Special print spec. for float, octal, hex

The behaviour for the # flag is given below.

Format specification of printf II

Flag Meaning

%#0 Adds leading 0 to octal number

%#x or X Adds leading 0x or 0X to hex

%#f or e Always prints decimal point

%#g or G Prints trailing 0s and decimal point

<precision> gives the number of digits after the decimal
point for float values. If present it should be preceded by a
decimal point. For string values printed with %s only that
many characters will be printed

The <size> modifier behaviour is given below.
Flag Conv. char Meaning

l d,i,o,u,x long int

h d,i,o,u,x short int

l e,f double

L e,f long double

