
CSD101: Introduction to computing and programming (ICP)

Conditional construct switch

The switch construct allows us to switch between different
alternatives based on the value of an expression. Execution starts
at the matching case and continues below. Cases and default can
occur in any order. An explicit break statement is needed to avoid
cascading cases and exiting the switch statement.

switch (<expr>) {

case <const-expr>: <statement>

case <const-expr>: <statement>

...

default: <statement>

}

printf structure

The printf function call structure is below.
printf("<format spec.>",<arguments>)

The <format spec.> contains 0 or more conversion
specifiers signalled by the % sign. For each conversion
specifier there should be an argument in <arguments> of the
corresponding type.

Till now the conversion specifiers have been simple indicators
of the type. For example, %d for int , %f for float etc.

The conversion specifier can have a much more complex
structure with optional elements that allow one to control the
formatting. This is discussed in the following slides.

Format specification of printf I

The structure of the conversion specifier in the format specification
is given below.

% [<flags>] [<Min. width>] [<precision>] [<size>] <conv. char>

Only % and <conv. char> are necessary. Others are optional.

<Min. width> gives the minimum width in characters of the
entire field. For a string (%s) it is right justifed.

The <flags> are given below.

Flag Meaning

− Left justify

+ Print +/− sign of numeric value

space Print space if no sign

0 Pad with leading 0s

Special print spec. for float, octal, hex

Format specification of printf II

The behaviour for the # flag is given below.

Flag Meaning

%#0 Adds leading 0 to octal number

%#x or X Adds leading 0x or 0X to hex

%#f or e Always prints decimal point

%#g or G Prints trailing 0s and decimal point

<precision> gives the number of digits after the decimal
point for float values. If present it should be preceded by a
decimal point. For string values printed with %s only that
many characters will be printed

The <size> modifier behaviour is given below.
Flag Conv. char Meaning

l d,i,o,u,x long int

h d,i,o,u,x short int

l e,f double

L e,f long double

Format specification of printf III

printf conversion char description1

1From Kernighan, Ritchie

scanf

scanf is similar to printf in structure. It has a format
specification and arguments.

The format specification contains the conversion specifications
and reads in values based on the conversion specification till it
hits a white space character (blank, tab, newline,carriage
return, vert tab, formfeed). The argument corresponding to
each conversion specification must be an address of a variable
of a compatible type.

Any characters specified in the format specification other than
the conversion specification must match exactly in the input.

scanf returns the number of items converted and assigned or
an error (or EOF - end of file) if there is a converion error
(end of input reached before conversion).

scanf - conversion table2

2From Kernighan, Ritchie

Other input-output functions

The standard C library also provides single character
input-output.

getchar() reads a single character from the standard input
stream (keyboard) and returns an int value corresponding to
the character read. If the end of the input stream is reached it
returns the EOF character (end-of-file). EOF is returned when
there is no more input and the end of the input stream is
reached.

putchar(ch) writes the character ch on the standard output
(terminal/screen) and returns an integer corresponding to the
character ch.

Note that C encodes characters as unsigned integers so one
can do arithmetic operations on characters as if they were
integers. This is actually a weak point of C .

Block

Definition 3 (Block)

A block is a function or any set of statements enclosed within {...}
(curly brackets). Variable declarations can be made within blocks.
The for loop also forms a block.
C versions from C99 onwards allow declarations anywhere in the
body of a function.
Variables declared within a block are alive and accessible only
within the block. Storage is allocated when a declaration is
encountered and de-allocated when the block is exited.

Scope of variables/names

Definition 4 (Scope)

The scope of a variable or name is the body of the program text
where it is accessible.

The scope of a variable or name extends from the point of
declaration till the end of the block in which it occurs.

Global/ external variables are those that are declared outside
any function.

Variables declared within a function or a block are called local
variables.

Function names and global or external variables have file
scope. That is they are accessible in the file where they have
been declared.

A function cannot be declared within a function.

