
Example Problems-2 - probs 3, 4

Expectation of a binomial random variable with parameters p and
n is pn. So, E (Y |X = n) = n

2 since p = 1
2 . Using law of total

probability:
E (Y ) =

∑6
n=1 E (Y |X = n)P(X = n) = 1

6

∑6
n=1

n
2 = 7

4

Similarly,

E (XY ) =
6∑

n=1

E (XY |X = n)P(X = n)

=
6∑

n=1

E (nY |X = n)P(X = n)

=
1

6

6∑
n=1

nE (Y |X = n)

=
1

6

6∑
n=1

n
n

2
=

91

12
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Example Problems-3. Three prisoners problem -
conditional probabilities

Three prisoners A, B, C are to be executed. The queen announces she
will pardon one of them. She randomly picks one and tells the jailer but
asks her not to reveal the name.

A sees the jailer and asks her who has been pardoned. She refuses to tell.
A then asks who of B or C will be executed. The jailer thinks a bit and
says ‘B is being executed’.

Has the jailer’s remark changed the probability of A being pardoned?

Here is the reasoning of each party:

Jailer:The probability of any prisoner being pardoned is 1
3 . One of B or C

must be executed so revealing that B is being executed did not change
A’s probability of being executed.

A: Since B will be executed only A or C can be pardoned so A’s
probability of being pardoned is 1

2 .



Who is right? I

Let A, B, C be the events that A, B, C respectively were pardoned.
Let J be the event jailer says ‘B is being executed’.

We have to find P(A|J) = P(A∩J)
P(J)

What happened is summarized below:

Pardoned Jailer says

A ‘B being executed’ | ’C being executed’ - both equiprobable i.e. 1
2

B ‘C being executed’

C ‘B being executed’

P(J) = P(jailer says ‘B being executed’)

= P(J ∩ A pardoned) + P(J ∩ C pardoned) + P(J ∩ B pardoned)

=
1

2
× 1

3
+

1

3
× 1 +

1

3
× 0

=
1

2



Who is right? II

So, P(A|J) = P(A∩J)
P(J) =

1
6
1
2

= 1
3

A wrongly interprets J as Bc giving P(A|Bc) = P(A∩Bc )
P(Bc ) =

1
3
2
3

= 1
2



Example Problems-4

In a coin tossing game you pay your friend Rs.10/- if your call
is wrong and he pays you Rs.10/- if your call is correct.

You lose Rs.100/- in 10 successive tosses where you called
Heads but the coin turned up tails.

Assuming the coin is fair what should you call on the eleventh
toss?

Since the coin is fair you can call either Heads or Tails it does not
matter.
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Examples: 2

1 There are 3 identical boxes (say 1, 2, 3) two of which contain
Rs.10/- and the third has Rs.1000/-. The choice of boxes for
putting the amounts is random. Also, the experimenter is told
which box contains what amount.

2 You, the player, choose a particular box.

3 The experimenter chooses a second box and shows that it
contains Rs.10/-. And gives you the option to switch to the
remaining box, if you wish.

4 Should you switch?



Examples: 2 contd.

Assume you choose Box 1. Let us analyse outcomes

Box 1 Box 2 Box 3 Stay Switch

10 10 1000 10 1000

10 1000 10 10 1000

1000 10 10 1000 10

So, better to switch. Probability of winning Rs.1000/- is 2
3 while

staying has a probability of 1
3 .
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Probability can play tricks with intuition

Simpson’s paradox. (Already discussed earlier)

Gambler’s fallacy.

Monty Hall problem.



Examples: 4

Figure: The number of • is same on opposite sides

The game has two players You and I:
The players select one of the dice and roll. The winner is the one
who rolls the higher number. Assume You select the die first.



Analysis of game - version 1

Analysis with (die A, die B):

S(S) = {(2, 1), (2, 5), (2, 9), (6, 1), (6, 5), (6, 9), (7, 1), (7, 5), (7, 9)}

The probability of each outcome is 1
9 . Probability Die A wins is 5

9
and B wins is 4

9 . Repeating such an analysis with (die A, die C)
and (die B, die C) gives the following table:

(die 1, die 2) Prob. die 1 wins Prob. die 2 wins

(A,B) 5/9 4/9

(A,C) 4/9 5/9

(B,C) 5/9 4/9

The player choosing first is always worse off since A � B � C � A
(where � is better than or higher probability than relation). Note
that the � relation is not transitive.



Analysis of game - version 2

Analysis: each die A. B rolled twice and summed. Let A, B be the
random variables for the sums for A, B respectively.

B ∈ {2, 6, 6, 10, 10, 10, 14, 14, 18} and
A ∈ {4, 8, 8, 9, 9, 12, 13, 13, 14}. We have 81 possible pairs as the
outcome of the game. A’s win probability is 37/81, B’s is 42/81 and
there is a tie with probability 2/81.

A similar analysis for the others yields the following table:

(die 1, die 2) Prob. die 1 wins Prob. die 2 wins Draw

(A,B) 37/81 42/81 2/81

(A,C) 44/81 33/81 4/81

(B,C) 37/81 42/81 2/81

In this case we have: A ≺ B ≺ C ≺ A. Choosing first is still bad
but the relations have reversed.

Probabilities do not follow intuitive rules.



Law of large numbers

Theorem 1 (Weak law of large numbers)

Sample average converges in probability towards the expected
value as sample size n→∞.
lim
n→∞

P(|X̄n − µ| > ε) = 0

Theorem 2 (Strong law of large numbers)

Sample average converges almost surely to the expected value as
sample size n→∞.
P( lim

n→∞
X̄n = µ) = 1


