
Multiple regression I

When one dependent variable depends on multiple
independent variables values of the dependent variable can be
predicted using a function of all the independent variables
that are believed to affect the dependent variable.

So, if there are k independent variables the function
f : DX1 × DX2 × . . .× DXk

→ DY where DXi
is the domain of

variation for variable Xi and Dy is the domain of variation for
the dependent variable Y .

We will only look at the case where f is a linear function. So,
the estimate of Y , Ŷ is given by: Ŷ = a + b1X1 + . . .+ bkXk .

Once we have multiple independent variables we have two
cases:

The independent variables are pairwise uncorrelated (also
called orthogonal).



Multiple regression II

There is at least one pair of correlated variables (also called
non-orthogonal).

We will study the case when we have two independent
variables. When more than two variables are present the same
basic approach works. We also start with the orthogonal case.



Multiple regression: two variables, orthogonal I

In this case Ŷ = a + b1X1 + b2X2.

Geometrically the regression line becomes a plane and
3-points are required to completely fix the plane.

a is the intercept; b1 is the slope in the X1 direction and b2 is
the slope in the X2 direction.

Calculating the best regression plane is exactly similar to the
one variable regression case. We calculate the squared error
expression:
E(ε) =

∑
i (Yi − (a + b1X1i + b2X2i ))2, find ∂E

∂a , ∂E
∂b1

, ∂E
∂b2

equate each to 0 and find the values of a, b1, b2 that
minimizes ε2. The detailed derivation is an excercise.



Exercise

Exercise 2

Using the expression for the square error above differentiate with
respect to a, b1, b2, equate each to 0 and derive formulae for the
3 parameters a, b1, b2.



Values of a, b1, b2

The values of a, b1, b2 are (using the notation of the earlier lec.):

a = µY − b1µX1 − b2µX2

b1 =
SSX 2SCPX 1·Y − SCPX 1·X 2SCPX 2·Y

SSX 1SSX 2 − SCP2
X 1·X 2

b2 =
SSX 1SCPX 2·Y − SCPX 1·X 2SCPX 1·Y

SSX 1SSX 2 − SCP2
X 1·X 2

Also, note that the point (µX1 , µX2 , µY ) lies on the regression
plane.



Quality of the prediction

As done for simple linear regression we need to judge whether the
regression can occur by chance at a chosen α-level. Also, calculate
percentage of variance explained by the linear relationship and the
contribution of each variable.

Quality is measured by the squared correlation:

R2
Y ·X 1X 2

=
SCP2

Ŷ ·Y
SSŶ SSY

. Note the use of capital R for

multi-variable correlation.

R2 gives the fraction of the variance in Y explained by the
linear relationship.

The F-ratio is defined as:

FY ·X 1X 2 =
R2
Y ·X1X2

1−R2
Y ·X1X2

× N−k−1
k where N is the sample size and

k is the number of independent variables.

Assuming H0 is true the F-ratio follows a Fisher distribution
with ν1 = k and ν2 = N − k − 1.

For a chosen α if F ≥ Fcritical then H0 can be rejected.



Contribution of each independent variable I

R2
Y ·X 1X 2

gives the fraction of the variability in Y that is
explained by the linear relationship between Y and the
independent variables or equivalently (Ŷ ).

The contribution of each independent variable to the
predicted variable Ŷ is given by single variable correlations:

r 2
Ŷ ·X 1

=
SCP2

Ŷ ·X1
SSŶ SSX1

and

r 2
Ŷ ·X 2

=
SCP2

Ŷ ·X2
SSŶ SSX2

.

Also, r 2
Ŷ ·X 1

+ r 2
Ŷ ·X 2

= 1



Contribution of each independent variable II

Similarly, the contribution of each independent variable to the
dependent variable Y is given by single variable correlations:

r 2
Y ·X 1

=
SCP2

Y ·X1
SSY SSX1

and

r 2
Y ·X 2

=
SCP2

Y ·X2
SSY SSX2

.

Also, r 2
Y ·X 1

+ r 2
Y ·X 2

= R2
Y ·X 1X 2

So, r 2
Y ·X 1

, r 2
Y ·X 2

give the proportion of the variance of Y given
by X 1 and X 2 respectively. All the above holds only when X 1

and X 2 are orthogonal.

From the earlier equations we have the following:
r 2
Y ·X 1

= r 2
Ŷ ·X 1

× R2
Y ·X 1X 2

r 2
Y ·X 2

= r 2
Ŷ ·X 2

× R2
Y ·X 1X 2



Tests for individual variables

To check how different from 0 the contributions of the
individual variables are calculate the F-ratios:

FY ·X 1 =
r2
Y ·X1

1−R2
Y ·X1X2

× (N − k − 1)

FY ·X 2 =
r2
Y ·X2

1−R2
Y ·X1X2

× (N − k − 1)

Each F-ratio has a Fisher distribution with ν1 = 1,
ν2 = N − k − 1 assuming H0 is true. So, calculate the critical
values for the chosen α-level and if F ≥ Fcritical then reject H0.



Partitioning the variance

Just as in the simple linear regression case the variance of Y
can be partitioned into a regression part and a residual part.
SStotal = SSregression + SSresidual

SSregression can be further partitioned into contributions from
X 1 and X 2.

We have: Y = Ŷ + ε and Ŷ = a + b1X 1 + b2X 2.
Substituting for a gives:

Ŷ = µY − b1µX1 − b2µX2 + b1X 1 + b2X 2

= µY + b1(X 1 − µX1) + b2(X 2 − µX2)

Y = µY + b1(X 1 − µX1) + b2(X 2 − µX2) + (Y − Ŷ )

So, Y is made up of µY , sum of each weighted, zero mean
centred independent variables and the error.



Partitioning SSregression

Ŷ − µY = b1(X 1 − µX1 ) + b2(X 2 − µX2 )∑
i

(Ŷ − µY )2 =
∑
i

[b1(X 1 − µX1 ) + b2(X 2 − µX2 )]2

= b2
1

∑
i

(X 1 − µX1 )2 + b2
2

∑
i

(X 2 − µX2 )2+

2b1b2

∑
i

(X 1 − µX1 )(X 2 − µX2 )

= b2
1SSX 1 + b2

2SSX 2 + 2X 1X 2SCPX 1·X 2

= b2
1SSX 1 + b2

2SSX 2

SCPX 1·X 2 = 0 since X 1, X 2 are orthogonal



Partitioning SSregression contd.

SSregression = b2
1SSX 1 + b2

2SSX 2

=
SCP2

X 1·Y
SS2

X 1

SSX 1 +
SCP2

X 2·Y
SS2

X 2

SSX 2 substitute for b1, b2

= r 2
YX 1

SSY + r 2
YX 2

SSY = SSY ·X 1 + SSY ·X 2

R2
Y ·X 1X 2

= r 2
YX 1

+ r 2
YX 2

after dividing above by SSY



Degrees of freedom and mean square values

Three points are needed to fully define the regression plane.
(µX1 , µX2 , µY ) is on the plane. So, only two points can be
independently chosen so dfregression = 2.

For dfresidual the sample has N points, k independent variable
values are known and the residual has mean 0. So,
dfresidual = N − k − 1.

So, we can use mean squares( as done earlier)

s2
regression =

SSregression

dfregression
=

SSregression

2

s2
residual = SSresidual

dfresidual
= SSresidual

N−k−1

s2
Y ·X 1

=
SSY ·X1
dfX 1

s2
Y ·X 2

=
SSY ·X2
dfX 2

Note that dfX 1 = 1, dfX 2 = 1.

Mean squares, unlike sum of squares and degrees of freedom,
do not add up.



Using mean squares for quality

Similar to simple linear regression but now we get 3 F-ratios:

FY ·X 1X 2 =
s2

regression

s2
residual

FY ·X 1 =
s2
Y ·X1

s2
residual

FY ·X 2 =
s2
Y ·X2

s2
residual

The test remains the same. Find Fcritical in each case using
the F-distribution using the relevant α, ν1, ν2 and reject H0 if
Fratio ≥ Fcritical.



Problem/Exercise I

This is a pseudo replication of an experiment on retro-active interference. Retro-active
interference happens when what we are learning now can interfere with what we have
learnt in the past and therefore make us forget what was learnt earlier. The
experiment involves learning a first list of words, then a second list of words followed
by a recall of the first list of words. The controls learn only the first list and recall it.
In the actual experiment a subject was presented a sentence 2, 4 or 8 times (first list -
X 1) and then presented a second sentence again 2, 4 or 8 times (second list - X 2) and
was then asked to recall the words in the first sentence. The number of words recalled
was the dependent variable Y . The data below gives the details for 18 subjects two
per condition.

X 2

X 1 2 4 8

2 35 21 6

39 31 8

4 40 34 18

52 42 26

8 61 58 46

73 66 52

1 Plot a scatter diagram for the data.



Problem/Exercise II

2 Find the best fit minimum squared error regression plane.

3 Find R2
Y ·X 1X 2

.

4 Find FY ·X 1X 2
.

5 Find the critical values for the F-distribution for α = 0.05, 0.01.

6 Can H0 be rejected at the above two alpha levels?

7 What percent of the variance can be explained by regresssion?

8 Find r2
Ŷ ·X 1

, r2
Ŷ ·X 2

, r2
Y ·X 1

, r2
Y ·X 1

9 For the individual correlations find the F-ratios, critical values and test the
corresponding H0.

10 Compute F using s2
regression and s2

residual and repeat the tests for H0 at the two
levels.

11 Repeat the individual variable tests using mean squares and find the fraction of
the variance explained by each variable.



Example experiment - non-orthogonal variables I

This is a pseudo replication of an experiment that studies memory span in children
with changing age and speech rate. In the experiment children of 3 ages 4, 7, 10 years
(first independent variable X 1) were tested for immediate serial recall of 15 items.
The dependent variable was the total number of words correctly recalled (Y
dependent variable). The speech rate of each subject was also measured by making
the subject read a passage aloud and measuring the time taken. The speech rate is
then calculated as words read per unit time (X 2 second independent variable).
The hypothesis is that the memory span Y will be positively correlated with age and
speech rate. But it is also known that higher age usually also means higher speech
rates. So, there is a correlation between age and speech rate as well. The independent
variables are, therefore, non-orthogonal.

X 1(Age) X 2(Speech rate) Y (words recalled)

4 1 14

4 2 23

7 2 30

7 4 50

10 3 39

10 6 67



Correlated/non-orthogonal independent variables - what is
same

In some experiments (see example in previous slide) the
independent variables are correlated or non-orthogonal. Some
details of the regression calculations change when this is the
case others remain the same.

The bulk of the analysis comprising the items below remains
unchanged.

i) formulae for a, b1, b2 ii) calculation of quality parameters
R2
Y ·X 1X 2

, FY ·X 1X 2 iii) critical values from F-distribution and iv)
test of the statistic to decide whether or not H0 should be
rejected.
Formulae for individual variable contributions r 2

Ŷ ·X 1
, r 2

Ŷ ·X 2
and

r 2
Y ·X 1

, r 2
Y ·X 2

.
Formulae and tests for the individual variables’ statistics
FY ·X 1≥Fcritical

and FY ·X 2 ≥ Fcritical.



Correlated/non-orthogonal independent variables - what is
different

What is different in the non-orthogonal case is:
i) r 2

Ŷ ·X 1
+ r 2

Ŷ ·X 2
6= 1 and

ii) r 2
Y ·X 1

+ r 2
Y ·X 2

6= R2
Y ·X 1X 2

.

Since X 1, X 2 are correlated there are three contributions to Y
(apart from the residual) a) common part of X 1 and X 2, b)
the part specific only to X 1 c) the part specfic only to X 2.

The non-zero common part being counted twice leads to the
inequalities.



Values of a, b1, b2

The values of a, b1, b2 are exactly the same as for multiple
regression in the orthogonal case:

a = µY − b1µX1 − b2µX2

b1 =
SSX 2SCPX 1·Y − SCPX 1·X 2SCPX 2·Y

SSX 1SSX 2 − SCP2
X 1·X 2

b2 =
SSX 1SCPX 2·Y − SCPX 1·X 2SCPX 1·Y

SSX 1SSX 2 − SCP2
X 1·X 2

Also, note that the point (µX1 , µX2 , µY ) lies on the regression
plane.

The formulae for the statistics and tests for H0 rejection remain
unchanged. So, look at the slides for the non-orthogonal case for
the details.



Exercise/Problem

Exercise 3

For the experimental data given in the first slide calculate the
parameters a, b1, b2. Then compute R2

Y ·X 1X 2
, FY ·X 1X 2 and test

whether or not H0 can be rejected.
Further calculate r 2

Ŷ ·X 1
, r 2

Ŷ ·X 2
and r 2

Y ·X 1
, r 2

Y ·X 2
and verify that

r 2
Ŷ ·X 1

+ r 2
Ŷ ·X 2

6= 1 and r 2
Y ·X 1

+ r 2
Y ·X 2

6= R2
Y ·X 1X 2

. This is unlike the

orthogonal case.



Contribution of each variable

To isolate the specific contribution of each independent variable
compute how much X 1 is predicted by X 2 and vice versa. The
residual of each prediction (that is (εX 1 = X 1 − X̂1) and
(εX 2 = X 2− X̂2)) is clearly uncorrelated with the predictor and gives
the specific contribution of the corresponding independent variable.

The equation for dependence of X 1 on X 2 is:
X̂1 = aX 2 + bX 2X 2

and for the dependence of X 2 on X 1 is:
X̂2 = aX 1 + bX 1X 1

The formulae for the parameters in the two equations are (similar to
the simple linear regression formulae):

aX 2 = µX1 − bX 2µX2 , bX 2 =
SCPX1·X2

SSX2

aX 1 = µX2 − bX 1µX1 , bX 1 =
SCPX1·X2

SSX1

The specific contributions of the two independent variables are: εX 1

and εX 2 .



Contribution of each variable contd.

The part correlation (so called because correlation is between
a part of the independent variable and dependent variable Y )
r 2
Y ·εX1

and r 2
Y ·εX2

is given by:

r 2
Y ·εX1

=
SCP2

Y ·εX1

SSY SSεX1

r 2
Y ·εX2

=
SCP2

Y ·εX2

SSY SSεX2

Exercise 4

Calculate the regression between X 1 (dependent) and
X 2(independent) and vice versa by finding aX 2, bX 2 and aX 1 and
bX 1.
Calculate the part correlation of εX 1 and εX 2 with Y - that is
r 2
Y ·εX1

and r 2
Y ·εX2

.



Individual variable contributions as increments

Another way to calculate specific individual variable
contributions is by looking at the increment that is obtained
when the kth variable is added. Assume, R2

Y ·X 1...Xk−1
then add

the kth variable to get R2
Y ·X 1...Xk

. The specific contribution of

the kth variable will be

r 2
Y ·εXk

= R2
Y ·X 1...Xk

− R2
Y ·X 1...Xk−1

For k = 2, the individual variable contributions are given by
r 2
Y ·εX1

= R2
Y ·X 1X 2

− r 2
Y ·X 2

and r 2
Y ·εX2

= R2
Y ·X 1X 2

− r 2
Y ·X 1

.

Let R2
Y ·X 1∩X 2

denote the part of the variance explained by the
common portion of X 1 and X 2. Then,
R2
Y ·X 1∩X 2

= R2
Y ·X 1X 2

− (r 2
Y ·εX1

+ r 2
Y ·εX2

)



Partitioning the variance

The total variance can be partitioned into four parts:

total variance = variance due to common part of X 1, X 2 +

variance specifically due to X 1 +

variance specifically due to X 2 +

residual variance (unexplained)

As an equation:

R2
Y ·X 1∩X 2

+ r 2
Y ·εX1

+ r 2
Y ·εX2

+ residual variance = 1

Exercise 5

Calculate r 2
Y ·εX1

, r 2
Y ·εX2

and R2
Y ·X 1∩X 2

using the ‘contribution as

increment’ method and the residual variance. Compare with the
values calculated in the earlier exercise.



Alternate formulae for part correlation coefficients

The part correlation coefficients can be directly calculated
using other correlation coefficients:

r 2
Y ·εX1

=
(rY ·X 1 − rY ·X 2rX 1·X 2)2

1− r 2
X 1·X 2

r 2
Y ·εX2

=
(rY ·X 2 − rY ·X 1rX 1·X 2)2

1− r 2
X 1·X 2

Exercise 6

Compute the part correlation coefficients with alternate formulae
and confirm that you get the same values.



F test for part correlation coefficients

The formulae for the F-ratio for the part correlation
coefficients is similar to the earlier formulae:

FY ·εX1
=

r 2
Y ·εX1

1− R2
Y ·X 1X 2

(N − K − 1)

FY ·εX2
=

r 2
Y ·εX2

1− R2
Y ·X 1X 2

(N − K − 1)

The sampling distribution is the Fisher F-distribution with
ν1 = 1 and ν2 = N − k − 1. The critical values can be found
for the chosen α and then reject H0 if F − ratio ≥ Fcritical.

Exercise 7

Calculate the F-ratio for both part correlation coefficients and
determine if H0 can be rejected α = 0.5 and α = 0.01.



More than two independent variables

When k > 2 then the formulae for the parameters in the
regression equation become very complicated and it is best to
use libraries to do the necessary calculations.

The incremental contribution of a variable approach can be
used to calculate the part correlation coefficients. The
alternate formulae (extended versions) can also be used to
calculate the same coefficients.



Multi-collinearity

If one or more independent variable is completely determined
by another independent variable - that is the correlation
coefficient between the two variables is 1 then the
denominatior 1− r 2

X 1·X 2
is 0.

This situation is akin to having dependent variables in systems
of linear equations.

Calculations can also break down if two independent variables
are highly correlated (that is a correlation coefficient very close
to 1). Then 1− r 2

X 1·X 2
can be very small leading to overflows.



More general use of part correlation coefficient

To calculate the dependencies in a set of dependent variables
after the effect of one variable in the set has been removed
part correlation methods can be used. For example, if Y , W
and Z are a set of dependent variables then to eliminate the
effect of Z from Y and W find the residual εYZ

= Y − ŶZ

and εWZ
= W − ŴZ then find the correlation coefficient

between εYZ
and εWZ

. One can write the formula in terms of
other correlation coefficients:

r 2
εYZ ·εWZ

=
(rY ·W − rY ·Z rW ·Z )2

(1− r 2
Y ·Z )(1− r 2

W ·Z )


