
Sample and sampling distribution facts summary I

For several different statistics with sufficiently large sample
size the sampling distribution is close to normal. We will be
largely concerned with the the mean µ.

This can be used to calculate estimates of several properties
of population parameters.

The sample mean X̄ is an unbiased estimator µ̂ of the
population mean µ. That is E (µ) = E (µ̂) = E (X̄ ). In
practice we use X̄ .

The sample variance s2 (or S2) is a biased estimate of the
population variance σ2. The unbiased estimator σ̂2 is n

n−1s
2 .

So, the sample variance s2 slightly underestimates the
population standard deviation.



Sample and sampling distribution facts summary II

The square root of the variance estimator
√
σ̂2 written σ̂ is

actually a slightly biased estimator of σ (because of the
non-linear operator

√
) but the bias is very small and in

practice we pretend it is an unbiased estimator of σ.

The variance of the sampling distribution (assuming it is

normal) is σ2
sd = σ2

N , where N is sample size. The standard
deviation of the sampling distribution, σsd is also called the
standard error of the mean (or SEM). We will continue to use
our notation, the subscript ‘sd’ on the symbol used for the
population symbol σ. So σsd = σ√

N
.



Point estimates I

From a sample we usually want to estimate the population
parameters.

Two estimates can be calculated: point estimates and interval
estimates.

Let P(X = x |~θ) be the pdf of some population, where ~θ is the
vector of population parameters. Example: (µ, σ2) for normal
or (n, p) for a binomial etc.

Let (X1, . . . ,XN) be an iid sample drawn from the population
with values (x1, . . . , xN). Since the sample is iid the joint
probability of seeing the sample give the population
parameters is:
P(X1 = x1|~θ)× P(X2 = x2|~θ)× . . .× P(XN = xN |~θ)
This is called the likelihood function or just likelihood and
written L(~θ|~x) =

∏N
i=1 P(X = xi |θ).



Point estimates II

One way to estimate ~θ is to choose values of ~θ that maximizes
the likelihood. That is it maximizes the probability of jointly
seeing the values actually seen - namely the likelihood.

When the pdf is continuous this can be estimated by
differentiating the likelihood w.r.t each parameter in ~θ.

For the normal distribution this can be done analytically to
obtain:
µ̂ = X̄ and σ̂2 = N

N−1s
2 (corrected for bias).

For likelihoods that are not differentiable numerical
maximization has to be done using a search of the parameter
space.



Properties of estimators

An estimator θ̂ is unbiased if E (θ̂) = θ.

An estimator θ̂ is consistent if θ̂ is unbiased and Var(θ̂)→ 0
as N →∞.

An estimator θ̂1 is more efficient than another θ̂2 if θ̂1

θ̂2
< 1



Confidence intervals, σ known

Point estimates do not say how accurate they actually are.
More useful to get a probability estimate for the interval
within which we expect the population parameter will lie w.r.t
to the random sample value of the statistic. This interval is
called the confidence interval (CI) and the corresponding
probability converted to a percentage is called the confidence
level (CL). Popular values for CL are 90%, 95% and 99%.
Note: CL values are also written as α and can be in the
interval [0, 1] instead of [0, 100].
The probability is associated with the interval when the value
is from a random sample. The actual population parameter is
an unknown constant and has no associated probability.
Intuitively, think of CI-CL as the relative frequency (CL) with
which the population value falls within the CI interval w.r.t
the random sample value assuming we draw a large number of
samples.



CI calculation I

The expression for the CI depends on the sampling
distribution.

Assuming the sampling distribution is std. normal we get the
following CI:

µ ∈ [X̄ − z?, X̄ + z?]

where z? = Φ−1(1− α
2 ) = −Φ−1(α2 ) and Φ is the cdf of the

std. normal distribution.
The following table gives the z? values (called critical values):

CL 90% 95% 99%

α 0.90 0.95 0.99

z? 1.645 1.96 2.576

For a normal distr. above translates to:
X̄ − z?σsd ≤ µ ≤ X̄ + z?σsd . Commonly used value z? = 1.96.



CI when σ not known

σ is almost never known. Only s is known.
When σ is not known we have to use sample std. deviation s
and the t-distribution.

(source: wikipedia)
The CI is: X̄ − t?sµ ≤ µ ≤ X̄ + t?sµ where sµ = s√

N
, N: the

sample size and t? critical value for the CL chosen.

CL 90% 95% 99%

t?@20 1.73 2.093 2.861

t?@30 1.699 2.045 2.756

z? 1.645 1.96 2.576



The t distribution

The Student-t or just t distribution family arises when
estimating the mean of a normal population where sample size
is small and population variance is not known.

If sample size is N then we have ν = N − 1 called degrees of
freedom as an extra parameter in a t-distribution.

The random variable X̄−µ
s/
√
N

has a t-distribution with

ν = N − 1 where X ∼ N(µ, σ2), s is the sqrt. of the unbiased
sample variance and N is the sample size.



CI for Difference of means, σ1, σ2 known

Assume we have two populations and we measure the same
attribute from random samples chosen independently from
each population. Let the respective means be µ1 and µ2.

if sample sizes are sufficiently large the sampling distribution
of the difference of means is also close to normally distributed
with mean X̄d = X̄1 − X̄2 (which is an unbiased estimator of

µd = µ1 − µ2) and σdsd =
√

σ2
1

N1
+

σ2
2

N2
.

So, the CI, as earlier is: X̄d − z?σdsd ≤ µd ≤ X̄d + z?σdsd .



CI for Difference of means, σ1, σ2 unknown

There are two cases: a) sample sizes are equal - N, b) unequal
sample sizes respectively N1, N2.

Assumption: the two variances are equal - homogeneity of
variance.

Equal sample sizes: X̄d − t?σdsd ≤ µd ≤ X̄d + t?σdsd where

σdsd =
√

2MSE
N , where MSE =

s2
1 +s2

2
2 , N: sample size. To find

t? the DoF = 2N − 2. Note: variance of sum of two
independent RVs is a sum of the variances.

Unequal samples: X̄d − t?σdsd ≤ µd ≤ X̄d + t?σdsd where

σdsd =
√

2MSE
Nh

, MSE = (SSE1 + SSE2)/ν, ν = N1 + N2 − 2

is DoF, Nh = 2
1
N1

+ 1
N2

and SSEi =
∑N1

j=1(xj − X̄i )
2, Nh is the

harmonic mean and SSEi are the sum of squared errors.



CI for proportion

Notation: π population proportion, p sample proportion, N
sample size.

The CI: p − z?σpsd ≤ π ≤ p + z?σpsd where σpsd =
√

π(1−π)
N

when π is known. When this is being estimated and is not

known, estimated by
√

p(1−p)
N .

Continuity correction: A Gaussian is continuous, but
proportions are not. Subtract 0.5

N from lower limit and add it
to upper limit.

Assumptions:

Sampling is random and independent.
Sufficient sample size - depends on p. Conservative rule of
thumb: Np,N(1− p) ≥ 10.



CI for difference of proportions

Let pd = p1 − p2. CI: pd − z?σdsd ≤ π1 − π2 ≤ pd + z?σdsd
when CLT applies - that is sufficiently large samples otherwise
use t? instead of z?. Here,

σdsd =
√

p1(1−p1)
N1

+ p2(1−p2)
N2

.

The continuity correction: subtract 0.5N1N2
N1+N2

from lower limit
and add to upper limit.



Hypothesis testing

Hypothesis tests are techniques for making rational decisions
in the context of incomplete information or uncertainty.

It gives methods to decide whether claims about the
behavioural effect(s) of one (or more) independent variable(s)
can be believed.

A hypothesis or claim is a precise statement about some
population parameter(s) - like mean, median, proportion,
difference of means, difference of proportions etc.

Examples:

Average height of the IITK population is 155cm.
The amount of caffeine in a cup of coffee (150ml) will reduce
the time students sleep in a class by at least 10 mins.

Typical hypotheses: µ = µ0, µ1 = µ2, µ1 = µ2 = µ3, π = 0.4,
π1 − π2 = 0, ρ1 − ρ2 = 0 etc.



Logic of hypothesis testing

How can we say that the independent variable(s) had an
effect and it was not a matter of chance (or other factors)?

If the probability that it is by chance is extremely small then
one would tend to believe that the independent variable had
an effect.

What is extremely small is subjective. Typically, it is 5% or
less or 1% or less. In behavioural studies the convention is 5%.


