
Sampling distribution

When we draw a random sample typically the way the units in the
sample are distributed is very close to the way elements are
distributed in the population. So, sample stastics are close to
population parameters.

With low probability we may get a sample that deviates significantly
from the population. Then the sample statistics will also deviate
significantly from the population parameters.

The sampling distribution of a statistic is the distribution of the
statistic when samples of the same size N are drawn i.i.d. with
replacement. Imagine drawing with replacement and calculating the
statistic repeatedly, say n times, from the population, as n→∞.

So the sampling distribution is a theoretical construct.

For example when statistic is the mean. The sampling distribution is
approx. normal irrespective of the population distribution, with
mean equal to the population mean µ and standard deviation (often
called standard error or standard error of the mean) σse = σ√

N
. This

is a consequence of the central limit theorem.



Notation

Population values: greek letters. Ex. µ (mean), σ (std-dev), σ2

(variance), ρ (Pearson correlation coefficient).

Estimates for a distribution: greek or latin letter (corresponding to
the parameter) with a cap. Ex. µ̂, σ̂, p̂.

Values for a sample: latin letters, Ex random variable name with
bar, X̄ , for mean; s for std. dev. etc.

Sampling distribution values will have subscript sd Ex. X̄sd , ssd .

N (capital N) - size of a single sample.

n (small n) - no. of samples.



Convergence

Convergence of a sequence xn to a limit x is based the how
the distance between xn and x changes.

If Xn is a sequence of RVs with distribution Fn(x),
Fn : R→ [0, 1] (cdf) then if n is fixed Fn(x) gives a real
number associated with x . Similarly, if x is fixed then Fn(x) is
a sequence of real numbers xn and we can ask whether it
converges to some limit F (x)? And whether this is true for
almost all values of x .

If we are concerned with RVs one measure of distance between
two RVs can be the distance between their distributions.

This gives us the concept of convergence in distribution.



Convergence in distribution

Definition 2 (Convergence in distribution or weak convergence)

A sequence X1,X2, . . . of real valued RVs

converges in distribtion or weakly (written
d→) to RV X if

lim
n→∞

Fn(x) = F (x)

for every x ∈ R at which F is continuous. Fn and F are cumulative
distribution functions of Xn and X respectively. /

Intuitively, we expect later values in the sequence to be better
modelled by the distribution F .



Examples of convergence in distribution

Example 1

Let {Xi} be a sequence of random variables drawn i.i.d from

U(−1, 1) then the sequence Zn, Zn =
∑n

i=1 Xi√
n

(normalized sums)

Zn
d→ N(0, 1

3 ).

Example 2

If sequence Xn is the fraction of heads after tossing an unbiased
coin n times. Then X1 has a Bernoulli distribution, Xn, n > 1 have
binomial distributions. As n→∞ the distribution will be
increasingly closer to a normal distribution. The sequence Zn,

Zn =
√

n(Xn−µ
σ ) will converge to SND. That is: Zn

d→ N(0, 1).



Example of convergence in distribution contd. I

Example 3

Let Xn be distributed iid as:

Fn(x) =


0 x < 0

x 0 ≤ x < 1

1 x ≥ 1

Define Yn = n(1− max
1≤i≤n

Xi )

Its distribution function is:
Fn(y) = P(Yn ≤ y) = P(n(1− max

1≤i≤n
Xi ) ≤ y)



Example contd.

P(n(1− max
1≤i≤n

Xi ) ≤ y) = P(max
1≤i≤n

Xi ≥ 1− y

n
)

= 1− P(max
1≤i≤n

Xi < 1− y

n
)

= 1− P(X1 < 1− y

n
, . . . ,Xn < 1− y

n
)

= 1− P(X1 < 1− y

n
)× . . .× P(Xn < 1− y

n
)

= 1− P(X1 ≤ 1− y

n
)× . . .× P(Xn ≤ 1− y

n
)

= 1− FY1(1−
y

n
)× . . .× FYn (1−

y

n
)

= 1− (FYn (1−
y

n
))n



Example contd.

So,

FYn =


0 y < 0

1− (FXn(1− y
n ))n 0 ≤ y < n

1 y ≥ n

Now, lim
n→∞

(1− y
n )n = e−y .

lim
n→∞

FYn(y) = FY (y) =

0 y < 0

1− e−y y ≥ 0

That is an exponential distribution.



Central limit theorem

Theorem 3 (Central Limit Theorem (CLT))

Let {X1,X2 . . .} be a sequence of iid RVs with E [Xi ] = µ and
Var [Xi ] = σ2 <∞. Let SN = X1+···+XN

N be the sample mean.

Then as N →∞ the RVs
√

N(SN − µ) converge in distribution to
the normal distribution N(0, σ2). That is:

√
N(SN − µ)

d→ N(0, σ2)

or equivalently

SN
d→ N(µ,

σ2

N
)



CLT for us - 1

Let X1, . . . ,XN be a random sample from an infinite or sufficiently
large population with any distribution with mean µ and variance
σ2 <∞. If N is sufficiently large then:

the sample mean X̄ follows an approximate normal distribution

with E [X̄ ] = µ̂ = µ

and variance σ2(X̄ ) = σ̂2 = σ2

N

Equivalently, X̄
d→ N(µ, σ

2

N ) as n→∞ or Z = X̄−µ
σ√
N

d→ N(0, 1) as

N →∞



CLT for us - 2

What is sufficiently large?

If the population distribution is symmetric, unimodal or
continuous then a sample size as small as N = 4 or N = 5 is
enough.

If the distribution is skewed then N ≥ 30 can be adequate.

If the distribution is extremely skewed then N ≥ 50 or even
N ≥ 100 may be needed.


